1節 共通事項
その他のCWの分類方法としては、次のようなものもある。
(ウ) 躯体とCWとの位置関係による分類
取付け形態による分類は、図17.1.1のように4タイプになる。
図17.1.1 取付け形態によるCWの分類
材料と取付け形態による分類を組み合わせると表17.1.1のようになる。

(2) CW工事に関する用語を、次に示す。
(ア) カーテンウォール(CW)
CWの設計は、デザインだけでなく、各種性能を満足するようバランスのとれたものが求められる。
(イ) 材料別での用語
(a) メタルカーテンウォール(以下、この章では「メタルCW」という。)主要構成部材に金属系材料を用いたCWである。
アルミニウム合金押出形材による方立方式が一般的である。このほか、アルミニウム合金押出形材や鋼材等の枠組みに表面材を工場で一体に取り付けた組立ユニット、アルミニウム合金押出形材を工場で一体に組み立てたユニットサッシ、アルミニウム合金を鋳造した部材等がある。
後者が、当然割高となるため、前者を多少変更して使うイージーオーダータイプもある。
(b) プレキャストコンクリートカーテンウォール(以下、この章では「PCCW」という。)
特徴としては、形状の自由度が高いことと石やタイル等の仕上げ材を先付け〈打込み〉できることである。
なお、PC版をPCa版と呼ぶこともある。その理由は、「PC」が(Precast Concrete)の略号であると同時に「プレストレストコンクリート(Prestressed Concrete :ストランドを緊張して圧縮応力を加えたコンクリート)」の略号でもあるので、混同を避けるためである。プレストレストコンクリートのプレキャストコンクリート部材をPC-PCa部材と略号で示すこともある。しかし、本指針では「標仕」と整合させ「PC」とした。
(ウ) 取付け形態別での用語
層間に渡る大型部材を、上下階の梁又はスラブ間(層間)に架け渡す方式。
腰壁部分と下がり壁部分を一体化した部材(主に梁を覆う部材)を、同一階の梁又はスラブに取り付ける方式。中間の開口部が横連窓となることが多い。
外観は、柱を覆う部材が連続する柱通し形と、梁を覆う部材が連続する梁通し形がある。
方立間に無目(横架材)を渡し、方立と無目に囲まれた部分に、ガラスや金属板等をはめ込む方式〈ノックダウン方式〉が一般的であるが、方立間に組立ユニットを取り付ける方式もある。
CW部材の取付けに使用する金物で、躯体付け金物、部材付け金物、連結用金物等の総称。CW部材の取付けの際に、躯体や製品の寸法誤差を吸収するためのルーズホールと、CW部材が層間変位等に追従するためのスライドホールが組み込まれる。また、CW部材の取付けの際に、上下方向を調整するためのボルト等の機構が組み込まれる。
地震や強風によって各階に生じる水平方向の変位において、当該階と上階若しくは下階との相対変位。層間変位の単位は、図17.1.2のように、分子を1とする分数表示によるラジアン角(層間変形角)で示すのが一般的である。層間変位量とは、層間変形角に層間高さを乗じた値となる。このほか、各階の階高が変化する鉛直相対変位もある。
なお、相対変位とは、ある部材を基準として測定した他の部材の変位である。
図17.1.2 層間変位のラジアン角による表示
(3) CWの仕事の流れは、一般的に次のようになる。
完成検査
デザインと性能設定の決定は、基本的に設計担当者が行うが、各部の納まりまで全て設計図書に記載するのは難しく、詳細設計において変更が起こり得る。
なお、詳細設計とは、設計図を基に、CW部材の製作上の要因、CWに隣接する部位との施工上の要因等を考慮し、かつ、要求性能を満たすように実施される設計行為である。
性能設定は、建物のグレードを考慮しながら、設定値が特記される。当然、高いグレードとすればコストアップするだけでなく、性能の実現のためにデザインの変更が必要になる。デザイン及びコストとのバランスも必要である。
詳細設計では、製作上及び施工上の種々の要因も考慮しなければならず、施工者及びCWの製造所との構報交換が必要になる。
(4) CW工事の工程管理
詳細設計は、多大な時間を要するため、検討を早めに開始する必要がある。詳細設計の開始が遅れたり、時間を費やし過ぎると、その後の施工図の作成工程やCW部材の製作工程が圧縮され、施工図の修正や検討ミス、コスト増を引き起こす。また、最悪の場合には、CW部材の製作が取付け工程に間に合わないことも起こり得る。したがって、詳細設計の承諾は、全体工程と十分に調整することが重要であり、取付け時期から製作工程等を逆算して期日を設定する必要がある。
詳細設計に多大な時間がかかる要因としては、次のようなことが挙げられる。
(a) CWの設計においては、デザインと要求性能がともすれば整合しないことがある。このような対立は、総合的な判断で解決する必要がある。
表17.1.2は、メタルCWの方立方式での、部材と性能の代表的な関連を例示したものである。例えば、方立や無目の見付け幅及び見込み幅は、デザイン上はできるだけ小さくしたいという要求がある一方、主に耐震性、耐風圧性からは、ある程度の幅が必要であるという不整合が起きる。また、PCCWでも、 PC版間及びPC版と他部材の取合いの目地幅は、デザインと耐震性(パネル長さが長い場合は耐温度性も考慮する)で調整が必要である。

外壁のデザイン決定、特に、CW部材の割付けが遅れると、躯体付け金物が、躯体鉄骨の製作工程に反映できないばかりでなく、コンクリートに埋め込まれる場合には、コンクリートの打ち分けが必要となるなど、全体工程にも影響を与えるおそれがある。
例えば、アルミニウム合金押出形材では、表面処理から着色工程まで連続工程となっているため、表面処理が着手できず、押出工程まで影響することもある。また、石やタイル打込みPC版では、石やタイルのでき上りが遅れると、 PC版が製作できない。
(d) CWの実大性能試験を行う場合は、試験体の製作、試験期間及び試験結果のフィードバックに数カ月を要するため、詳細設計の検討開始をより一層早めなくてはならない。
(5) CWの製造所の仕様
CWを設計、製作、施工するに当たっては、決定すべき事項が非常に多く、また、それらが製造所の製造方式等によって異なるため、一律に決めることができない。
また、設計担当者、監督職員、施工者が、全ての詳細を判断するのは難しい。このため「標仕」17.1.1 (2)では、設計図書に定める事項以外の仕様は、監督職員の承諾を受けて、各CWの製造所の仕様とすることができるとされている。JIS等の規定のない材料を使用する場合などは品質確認の観点から、材料に関する情報、性能証明、施工方法、保証及び管理体制の確認が必要となる。監督職員は、CWの製造所から提出される材料証明、製作要領書、試験結果等の資料を確認し、承諾を行う。
さらに、新しい技術を導入する場合には、「標仕」では規定しきれないことが予想される。この場合も製造所の仕様を参考にするとよい。
17.1.2 基本要求品質
(1) 「標仕」には、CWの種類に応じた材料が規定されている。メタルCWの主要材料は、素材のJISが指定されており、一般的に、JISに適合することの証明を CWの製造所から提出させる。PCCWの主要材料のうち、コンクリート材料は、 PCCWの製造所の標準調合でよいが、強度を日常的な品質管理賓料から確認する。鉄筋類は、JISが指定されており、一般的に、JISに適合することの証明をPCCWの製造所から提出させる。
材料のJISについては、2節以降の材料の項を参照されたい。
また、補助材料の中で具体的な品質を規定していないものがある。それらは、 CWの製造所が一般に使用しているものとしてよいが、材質等が確認できる資料又は実績を確認する。
CWは、多数の部材を取り付けるため、部材の精度は当然であるが、さらに、取付け精度が適切でないと、その性能を満足しない。「所定の形状及び寸法を有する」とは、取り付けた後の、CWとしてどの程度の精度を確保するかについて、あらかじめ「品質計画」において提案させ、これによってプロセスの管理を行うことと考えればよい。
CWの見え掛り部の「所要の仕上り状態」としては、取付け後の傷、汚れ、反り、へこみ、著しい色むら等の許容限度、これらの限度を超えた場合の処置方法も含めて「品質計画」で提案させるようにする。
(3) CWは、17.1.3に示す各種の性能が要求され、必要な性能値が設計図書に特記される。性能値には、次の項目がある。
断熱性、防耐火性、日射遮へい性
風切り音対策、
風圧力の大きさ、耐火性能のレベル及び高さ31mを超える建物の層間変形角は、法令に定められた基準がある。高さ31m以下の層間変形角及びその他の性能は、建物のグレード等に応じて設計担当者により特記される。設計担当者が性能を決めるときの参考として、(-社)建築開口部協会「カーテンウォール性能基準」や (-社)日本建築学会「JASS 14 カーテンウォール工事」がある。
なお、性能確認のためにCWの実大性能試験を行う場合は、検討期間が長期に渡ること及び多領の経費を要するので、試験の実施の有無と試験内容等については、特記されなければならない。
試験内容についての参考としては、「カーテンウォール性能基準」がある。また、 CWの製造所のカタログに掲載されている標準品で性能が表示されているものについては、その性能が確認されている。
17.1.3 性 能
「標仕」17.1.3(3)では、CWの性能の確認方法等は特記によるとしている。しかし、製品としての性能を確認することは容易でないため、特記がなければ、一般的な建物の場合には、性能の確認及び判定方法が確認できる適切な資料を施工者に提供させ、これにより監督職員が承諾する。
なお、適切な費料としては、次のようなものがある。
(d) 使用する部材(サッシ等)の試験成績書等(ただし、この場合は、部分的な試験によって、CWとしての性能を判定することの妥当性についての検討が必要である。)
。
当該部分の風圧力(Pa N/m2)又は平成12年建設省告示第1454号に基づく基準風速及び地表面粗度区分が特記され、後者の場合は、平成12年建設省告示第1458号に定める算定式に基づき算定する。平成12年建設省告示第 1454号に規定されている地表面粗度区分については、令和2年12月に一部改正され、従前設けられていた都市計画区域内・外の区分が削除されている点に留意されたい(改正内容の施行は令和4年1月)。
なお、設計者は、特記で基準風速の割増しを行うこともある。
また、高さ60mを超える建物については、指定性能評価機関の性能評価を受けることになっている。このような建物では、(-社)日本建築学会「建築物荷重指針 同解説」6章[風荷重]を用いる場合もある。
平成12年建設省告示第1458号では、「高さ13m以下の建築物」、「高さ13mを超える建築物の高さ13m以下の部分で、高さ13mを超える部分の構造耐力上の影響を受けない部分及び1階の部分又はこれに類する屋外からの出入口(専ら避難に供するものを除く。)を有する階の部分」の屋外に面する帳壁は適用除外とされている。高さ13m以下のCW部材に作用する風圧力については、「建築物荷重指針・同解説」に定める計算式によるほか、(-社)日本サッシ協会又は板硝子協会の提案する計算方法(16.2.2 (1)及び16.14.2(2)参照)によって算定することができる。また、同告示に規定する計算式を、高さ13m以下にそのまま適用することも技術的には可能であり、「カーテンウォール性能基準」や「JASS 14 カーテンウォール工事」では、この高さの範囲でも同様に適用されている。
性能値に加え、CW部材の自重による長期荷重を考慮し、次のような設定を行う。
③ ガラスを除くCW部材の変形は、原則として、支点澗距離の1/150以下、絶対値20mm以下で、かつ、有害な変形及び残留変形がないこと。ただし、4.0mを超える材のたわみについては、たわみ量を20mmに限定せず支点間距離の 1/200程度を特記することが多い。アトリウム等で、支点間距離が長大になるものについては、別途検討が必要である。CW部材の変形を問題とするのは、CW部材に組み込まれるガラスの破損防止のためであり、ガラスの支持辺となる部材が、風圧によって面外に過度に変形することで、ガラスの発生応力が想定値より大きくなるのを防止するためである。したがって、変形量を必要以上に小さく設定することは、あまり意味をもたない。一般的に、メタルCWで問題となり、PCCWでは特殊なケースを除き問題にはならない。
CW実大性能試験又はJIS A 1515(建具の耐風圧性試験方法)による試験を行う場合を除き、CW部材の自重による長期荷重に風圧力を加え、主要部材の発生応力度及び変形量を構造計算によって求め、要求性能を確認する。性能確認の詳細については、(-社)日本建築学会「実務者のための建築物外装材耐風設計マニュアル」に掲げる構造計算書の内容も参考になる。
CW部材に作用する外力のうち、地震の作用による慣性力には、面外、面内、鉛直の3方向がある。
特記がない場合は、一般的に次の値を用いることが多い。
② 鉛直方向(鉛直力)に対する震度 :0.5
慣性力に対する要求性能について、「カーテンウォール性能基準」と「JASS14 カーテンウォール工事」ではいずれも、水平方向及び鉛直方向の慣性力に対し、各部材はほとんど補修の必要なしに継続使用に耐えうるものとし、初期性能を損なわない損傷限界に留まるものとしている。
性能値に加え、CW部材の自重による長期荷重を考慮して、次のような設定を行う。
③ ガラスを除くCW部材は、有害な変形及び残留変形がないこと。
CW部材の自重による長期荷重に慣性力を加え、主要部材の発生応力度及び変形量を構造計算によって求め、要求性能を確認する。一般的なCW実大性能試験等では、慣性力に対する性能確認は困難である。
建物の変形は、中高層建物では、通常地震による変形が卓越するが、超高層建物では、風圧力による変形が問題になることもある。
性能値は、建物剛性によって決まるため、次の2段階の要求性能に対する変形角(1/X)が特記されるのが一般的である。
② CW部材は、破損・脱落しない。特に、ガラス等が破損・脱落しないことが不可欠である。
中層建物での一般的な層間変位の値は、16.1.7(1)(カ) を参照するとよい。
また、高さ31mを超える建物の帳壁は、昭和46年建設省告示第109号(最終改正令和2年12月7日)により、1/150の層間変位に対して脱落しないことと規定されているので、条件に当てはまる場合はこれに従う。
ただし、中層建物でも、純鉄骨造で剛性の比較的小さい建物や、偏心している建物で、面により層間変形角が異なる場合等、建物構造の地震時の変形に対応して、鉄骨造に対しては1/150 〜 1/120、剛性の高いものに関しては1/200程度を目標とすることが多い。
なお、一般的な性能値の参考としては、「カーテンウォール性能基準」や「JASS 14 カーテンウォール工事」がある。
一般的に、CW部材の取付けは、次のようにすることが多い(図17.1.1参照)。
① 層間方式で、面内剛性の高いCW部材(PC版等)では、一般に回転方式〈ロッキング方式〉、水平移動方式〈スウェイ方式又はスライド方式〉及び半水平移動・半回転方式〈ハーフロッキング方式〉のいずれかの方式で構造躯体へ取り付け、層間変位に追従させる。
方式の選択は、CW部材の形状(縦長部材か横長部材か等)、割付け(開口部の割付け等)、層間変位の性能値等によって決まるため、一概には選択できないが、できるだけ回転方式とすることが望ましい。
② 層間方式で、面内剛性の低いサッシ(ユニットサッシを含む。)では、サッシ枠を平行四辺形に変形させて層間変位に追従させる。
③ スパンドレル方式では、腰部分のCW部材は、梁・スラブと一緒に挙動するため、層間変位とは直接かかわらないが、腰部分のCW部材間に取り付けられるサッシ等(開口部のCW部材(横連窓))には、層間変位が集中することに注意が必要である。
④ 方立方式は、一端一点支点と考え、実質的に回転方式と類似した取付けとなる。
CW実大性能試験を行う場合を除き、層間変位が生じた状態でのCW主要部材の動きを計算によって求め、要求性能を確認する。
(c)①の場合では、CW部材に過度の応力が生じず、目地に充填されるシーリング材が設計伸縮率・せん断変形率範囲内にあることを計算により求め、確認する。これらの計算方法は、(-社)日本建築学会「外壁接合部の水密設計および施工に関する技術指針・同解説」を参考にするとよい。
(c)②の場合では、サッシのガラス溝底とガラスの小口が接触して、ガラスが破損しないことなどを計算により求め、確認する(16.1.7 (1)(キ) 参照)。
また、CW主要部材の動きにより、部材どうしがぶつかったり、目地に充填されるシーリング材が過度に圧縮されることがないことを確認する。
従来、わが国ではあまり設定していない条件であり、一般的な性能値がないのが現状である。長スパン梁や片持梁にCW部材が取り付く場合では、地震時の梁のたわみや梁の長期クリープによって、局部的に層間距離(鉛直距離)が変化(鉛直相対変位)することも想定される。
米国では、積載荷重による梁のたわみや、柱の温度変化による鉛直相対変位に対する追従性が要求されているようである。参考としてその内容を(b)から(d)に示す。
性能値は、梁の剛性等によって決まるため、変形最(mm)が指定されるのが一般的である。
CW部材がほとんど補修なしに継続使用できること。
一般的に、鉛直相対変位が生じた状態でのCW主要部材の動きを計算によって求め、(3)(ア) と同様の事項を確認する。
CW部材は、外気温や日射熱の影響によって伸縮する。特に、熱伸縮量の大きいメタルCW部材が顕著である。CW部材の取付け部は、熱伸縮に対しスライドできるようにし、熱伸縮品をCW部材問の目地で吸収するのが一般的である。
目地にシーリング材を充填する場合は、熱伸縮によってシーリング材が、圧縮・引張・せん断変形するので、シーリング材の設計伸縮率・せん断変形率を考慮した目地幅が必要となる。
性能値は、「外壁接合部の水密設計および施工に関する技術指針・同解説」による、温度ムープメントの符定式より求めた熱伸縮量が特記されるのが一般的である。9章7節を参考にするとよい。
② CW部材間の目地に充填される水密性確保のためのシーリング材に、損傷が発生しないこと。
一般的に、CW主要部材の動きを計算によって求め、要求性能を確認する。シーリング材の設計伸縮率.せん断変形率に関しては、9章7節を参考にするとよい。
フィルドジョイント構法については、確実なシール施工ができる納まりとすること、(2) 耐力性及び(3) 変位追従性の変形によって、シーリング材に損傷が生じないような目地幅とすること、また、シーリング材に損傷が生じても、実害のある漏水とならないようにする工夫(例えば、二重シーリング工法や排水機構の採用)が重要である。
表17.1.3 水密性能(カーテンウォール性能基準)
性能圧力差(上限圧力差又は平均圧力差)においてCWから漏水しないこと。
CW実大性能試験や、JIS A 1517(建具の水密性試験方法)に類する試験(海外で実施されているプロペラで風を当てる試験も含める。)以外では、性能の確認は困難である。したがって、過去に実施された類似の断面を有するCW又はサッシの実大性能試験の結果を参考にして確認する。
不定形材料(主にシーリング材)が充填されている目地は、不定形材料が確実に接着していれば、通気しない。したがって、ここでいう「気密性」とは、定形材料で気密性を確保している部位(主に可動サッシや等圧工法等)に限定される。
気密性は、水密性と同様に、建物条件によっても異なるため、性能値は、圧力差10Paに対する単位壁面積、単位時間当たりの通気量(m3/m2h、JIS A 4706では等級)が、特記されるのが一般的である。
なお、一般的な性能値の参考としては、JIS A 4706や表17.1.4に示す「カーテンウォール性能基準」がある。一般的に、中高層建物では2グレード(JIS等級A-4)、超高層建物では3グレード(0.5等級)が目安である(図17.1.3参照)。
表17.1.4 可動サッシ部の気密性能(カーテンウォール性能基準)
図17.1.3 気密等級線
本試験方法では通常の床に求められる非損傷性能については対象外とし、層間ふさぎに床としての性能を付与させる場合には載荷加熱試験により非損傷性能についても確認する必要がある。