第6章 コンクリート工事 3節 材料及び調合(R4版)

建築工事監理指針 第6章 コンクリート工事


3節 コンクリートの材料及び調合

6.3.0 一般事項

建築物に使用するコンクリートが所要の性能を満足するようにするためには、使用前に、各材料が所定の品質を満足することを試験又は生産者から提出された資料等により確認するとともに、「標仕」2節[コンクリートの種類及び品質]に示される各種規定を満足するよう、試し練り等を行って適切に調合することが重要である。

6.3.1 コンクリートの材料

6.2.1(3)でも述べたように、平成28年6月13日に平成12年建設省告示第1446号の一部が改正され、エコセメントや再生骨材Hを使用したコンクリートについても JIS A 5308(レディーミクストコンクリート)に適合したものであれば国土交通大臣の認定を受けなくても使用できるようになったため、平成31年版「標仕」からは、これらのコンクリートについても一部の材料の組合せや用途を除いて特記をせずに使用できることとなった。また、平成30年6月14日の同告示の一部改正(国土交通省告示第750号)により、回収骨材を使用したコンクリートが国土交通大臣の認定を受けなくても使用できるようになったため、平成31年版「標仕」からは、これを特記せずに使用できることとなった。

(1) セメント
(ア) セメントの分類
(a) セメントの分類を図6.3.1に示す。


図6.3.1 JISによるセメントの分類

わが国におけるポルトランドセメント(JIS R 5210)の全アルカリは、低アルカリ形を徐くとNa2O換算(Na2O + 0.658K2O)で0.75%以下であるが、使用する骨材によってはアルカリ骨材反応を起こすおそれがある。

なお、かつては「アルカリ骨材反応抑制対策に関する指針について」(平成元年7月建設省住指発第244号)の通達で、低アルカリ形ポルトランドセメントの使用がアルカリ骨材反応抑制対策の一つとして記されていた。しかし、低アルカリ形が1995年に11,000t生産された以降はほとんど製造されておらず、普通ポルトランドセメントのアルカリ量も低くなっていることなどから、平成12年にこの通達は廃止され、平成14年の国土交通省通達では「低アルカリ形の使用による抑制対策」の条文が削除されている。

(b) ポルトランドセメントは普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント及び耐硫酸塩ポルトランドセメントの6種類を基本とし、これに低アルカリ形の6種類を加え全部で12種類あり、その主な品質は表6.3.1に示すとおりである。

表6.3.1 ポルトランドセメントの品質(JIS R 5210:2019)

① 普通ポルトランドセメント(普通セメントと略称される場合もある。)は、建築のコンクリート工事用として現在最も多く使用されているセメントである。「標仕」では、特記のない場合は普通ポルトランドセメント又は高炉セメント、シリカセメント及びフライアッシュセメント(以下、この3種類を混合セメントという。)のA種を使用することになっているが、高炉セメント及びフライアッシュセメントともA種はほとんど生産されていないため、一般的には普通ポルトランドセメントを使用することが多い。

② 早強ポルトランドセメント(早強セメントと略称される場合もある。)の比表面積(ブレーン値)は、JISでは表6.3.1のように定められているが、市販品では4,700cm2/g程度である。比表面積はセメント粒子の細かさを示す値で、この値が大きいほど細かく、セメントと水との化学反応(水和反応)が活発になるため、図6.3.2に示すように他のポルトランドセメントよりも早期に強度が得られる。そのため、工期の短縮に有効であると共に、硬化初期の水和発熱量(凝結・硬化中に起こる発熱を水和熱という。)が大きいことから寒中コンクリートにも適している。ただし、発熱によるひび割れ等の弊害を伴うこともあるので、使用する季節や用途に注意が必要である。


図6.3.2 モルタルの圧縮強さ(JIS R 5201)
(「セメントの常識」より)

(c) 高炉セメント(JIS R 5211)は、普通ポルトランドセメントに適量の高炉スラグ微粉末を均ーに混合したもので、その分量によってA種、B種及びC種の3種類(表6.3.2参照)が規定されているが、A種及びC種の生産量は少なく、市販品としてはB種のものが一般的である。

(d) シリカセメント(JIS R 5212)は、普通ポルトランドセメントに適量のシリ力質の混合材を均ーに混合したもので、その分量によってA種、B種及びC種の3種類がある(表6.3.2参照)。耐薬品性に俵れているが、2010年度以降国内では生産されていない。

(e) フライアッシュセメント(JIS R 5213)は、普通ボルトランドセメントに適量のフライアッシュ(火力発電所等で石炭の燃焼時に発生する微粉状の石炭灰)を均ーに混合したもので、その分量によってA種、B種及びC種の3種類(表 6.3.2参照)が規定されているが、高炉セメントと同様、一般にはB種のものが多く流通している。

(f) 上記高炉セメント、シリカセメント、フライアッシュセメントのB種及びC種は、ボルトランドセメントと比較すると、化学的な作用又は海水に対する抵抗力が大きいなどの長所がある。しかし、同一調合の場合、一般的に中性化の進行が早く、早期強度の発現が小さいので、かぶり厚さや型枠の存置期間の検討が必要である。

表6.3.2 混合セメントの種類(JIS R 5211:2019、R 5212:2019及びR 5213:2009)

(g) エコセメントは、都市ごみ焼却灰を主とし、必要に応じて下水汚泥等を加えたものを主原料として製造される資源リサイクル型のセメントであり、2002年に JIS R 5214(エコセメント)としてJIS化された。JIS R 5214では、構成鉱物や塩化物イオン含有量によって普通エコセメントと速硬エコセメントに分類されている。2003年には、これらのうち塩化物イオン量が 0.1%以下の普通エコセメントのみがJIS A 5308に取り入れられた。また、2004年4月からはグリーン購入法特定調達品目にも指定されている。このエコセメントは、東京都の西多摩地域で年間約12万トン(2020年度)生産されている。

(イ) 高炉セメント及びフライアッシュセメントの品質

(a) 高炉セメントは、高炉スラグ微粉末の混合比(分量)によって使用したコンクリートの硬化途中の強度発現性状や硬化後の化学特性等が異なるため、上記 (ア)(c)でも記したように、高炉スラグ微粉末の混合比(分量)によって3種類に分類されている。B種は規格上 30% を超え 60% 以下となっているが、市販されている高炉セメントの高炉スラグの混合比(分量)は43%前後のものが多い。

普通ボルトランドセメントと比較すると次のような特徴がある。

① 初期強度はやや小さいが、4週以降の長期強度は同等又は同等以上になる。
② 耐海水性や化学抵抗性が大きい。
③ 一定量以上使用した場合にアルカリ骨材反応の抑制に効果がある。

(b) フライアッシュセメント
良質なフライアッシュはコンクリート中でボールベアリングのような働きをし、練混ぜ水を減少させることができ、ワーカビリティーの良いコンクリートが得られる。また、水和発熱量が比較的小さく、マスコンクリートに適する。さらに、高炉セメントと同様にアルカリ骨材反応の抑制にも効果がある。

なお、上記(ア)(e)でも記したように、フライアッシュの混合比(分量)によって3種類に分類されており、B種は規格上10%を超え20%以下となっている。市販されているフライアッシュセメントのフライアッシュの混合比(分量)は 17%前後のものが多い。

(c) 混合セメントのA種は、普通ボルトランドセメントと同様に使用できる。

(ウ) 普通エコセメントの適用範囲
6.2.1(3)項等でも記したように、普通エコセメントを使用したコンクリートについては、平成28年までは国土交通大臣の認定が必要であったため建築物への施工実績はまだ少ない。そのため、普通エコセメントの使用にあたっては、次頁の文献等を参考に別途使用する材料の種類や調合、コンクリートの発注、製造、打込み、養生及び品質の管理方法等を作成し、監督職員の承諾を受けておくことが重要である。

普通エコセメントは、塩化物イオン量を含め化学成分及び鉱物組成が普通ボルトランドセメント等と異なる部分があり、使用する混和材料や調合、施工時期等によっては得られる効果・性能・品質が異なる場合も考えられる。例えば、図6.3.3に示すように、高性能AE減水剤にナフタレン系のSP1を使用した場合、普通ボルトランドセメントと比較して所要のスランプを得るための添加率は水セメント比にかかわらず2倍程度必要であるが、ポリカルボン酸を主成分とするSP2等を使用した場合は水セメント比にかかわらず普通ボルトランドセメントと同程度である。また、図6.3.4に示すように、スランプの経時変化は、ポリカルポン酸系のSP2を使用した場合にはスランプロスがほとんどないが、ナフタレン系のSP1を使用した場合にはスランプロスが大きい。また同様に、ブリーディング量や凝結時間、空気量の経時変化にも高性能AE減水剤の主成分による効果の差が認められている。これら高性能AE減水剤や流動化剤等の高性能減水剤系の化学混和剤による普通エコセメントを使用したコンクリートのフレッシュ性状の変化及び不具合発生時の適切な対処方法を施工現場で確認することは、参考となる施工実績も少ないことから、現状では困難と考えられる。


図6.3.3 セメント種類と高性能AE減水剤添加率の関係 注(1)


図6.3.4 高性能AE減水剤の種類別のスランプ経時変化 注(1)

普通エコセメントを使用したコンクリートは、普通ボルトランドセメントを使用したコンクリートに比べて凝結時間が遅く、特に気温が低い場合にはこの傾向が大きい。また、図6.3.5に示すように、材齢初期の強度発現速度も普通ボルトランドセメントを使用した場合より遅くなり、その圧縮強度差は気温の低下と共に大きくなるため、初期凍害の防止が極めて重要と考えられる。


図6.3.5 養生温度と圧縮強度の関係(封かん養生)注(1)

以上のように、①普通エコセメントを使用したコンクリートのフレッシュ性状や硬化性状は普通ボルトランドセメントを使用したコンクリートと異なる傾向にあること、②軽量コンクリートや寒中コンクリート、マスコンクリート、流動化コンクリートについて、「JASS 5」注(2)及びエコセメントを使用するコンクリートの調合設計・施工指針注(3)では、普通エコセメントの使用が規定されていない若しくは使用する場合の規定が明確に示されていないこと、③建築物への使用実績がいまだごく僅かであることなどを考慮して、「標仕」では、普通エコセメントを適用する場合は、普通コンクリート(1~ 9節まで)、暑中コンクリート(12節)、無筋コンクリート(14節)によるとされている。s

注(1)建築研究所:
建築研究報告 No.144「エコセメントを使用したコンクリートの物理・カ学特性ならびに調合設計・施工技術に関する研究」、2005.12

注(2) 日本建築学会:
建築工事標準仕様書・同解説 JASS 5 鉄筋コンクリート工事 2018 (27節)

注(3) 日本建築学会:
エコセメントを使用するコンクリートの調合設計・施工指針(案)・同解説、2007

(2) 骨 材
(ア) 骨材は、コンクリート1本和の約7割を占め、その品質がコンクリートの諸性質に大きな影響を及ぼすので、良い品質のコンクリートをつくるためには、原則として、堅硬で物理的・化学的に安定であり、適度な粒度・粒形を有し、有害量の不純物・塩化物等を含まない骨材を使用する。しかし、骨材の品質は、地域差もあり、あらかじめその地域の骨材の種類と品質の実態を把握しておくことが重要である。

なお、再生骨材Hを使用する場合には、6.3.1及び6.3.2の記載を参考に、コンクリートの要求性能と骨材の品質との関係を試し練りを行って十分に把握し、必要に応じて計画調合等を検討することが重要である。

再生骨材には、再生骨材Hのほか、JIS A 5022の附属書A(規定)コンクリート用再生骨材M及びJIS A 5023の附属書A(規定)コンクリート用再生骨材Lがある。再生骨材M及び再生骨材Lは付着するペースト量が多く、これを用いるコンクリートは、乾煤収縮が大きくなる場合もある。

また、再生骨材コンクリートMの通常品及び再生骨材コンクリートLは、通常高い凍結融解抵抗性を確保することが難しいため、乾煤収縮の影響に加えて凍結融解作用を受けない部材又は部位に使用する。
なお、再生骨材コンクリートMについては、標準品に対して凍結融解抵抗性を高めた耐凍害品がある。

(イ) 骨材の種類及び品質
(a) 「標仕」6.3.1(2)(ア)により、骨材の種類はJIS A 5308の附属書A(規定)[ レディーミクストコンクリート用骨材 ]に規定されている砕石及び砕砂、スラグ骨材、人工軽量骨材、再生骨材H並びに砂利及び砂である。

なお、再生骨材Hを使用するコンクリートについては、6.2.1(1)でも記したように、これまで必要であった国土交通大臣の認定が不要となり、建築物の基礎、主要構造部等へも適用できることとなった。ただし、6.3.1(1)注(1)から注 (3)に記した文献では、普通エコセメントを使用するコンクリートに再生骨材Hを使用する場合は特記事項等とされ、かつ、普通エコセメントと再生骨材Hを併用する場合に参考となる技術情報等も示されていないので、「標仕」においても、普通エコセメントを使用するコンクリートに再生骨材Hを使用する場合は特記によるとされている。

(b) フェロニッケルスラグ骨材、銅スラグ細骨材及び電気炉酸化スラグ骨材は、普通骨材に比べて密度が大きく、使用される地域も限定されている。よって、これらの骨材を使用する場合は、設計担当者が特記しなければならない。

(c) 骨材の品質、砕石及び砕砂は、JIS A 5005(コンクリート用砕石及び砕砂)に、高炉スラグ粗骨材及び高炉スラグ細骨材は、JIS A 5011-1(コンクリート用スラグ骨材ー第1部:高炉スラグ骨材)に、フェロニッケルスラグ骨材、銅スラグ骨材、電気炉酸化スラグ骨材及び再生骨材Hは、それぞれ JIS A 5011-2(コンクリート用スラグ骨材ー第2部:フェロニッケルスラグ骨材)、JIS A 5011-3(コンクリート用スラグ骨材ー第3部:銅スラグ骨材)、JIS A 5011-4(コンクリート用スラグ骨材ー第4部:電気炉酸化スラグ骨材)及びJIS A 5021(コンクリート用再生骨材H)に規定されている。

(d) スラグ骨材を他の骨材と併用する場合、表面がガラス質のため、使用するスラグ細骨材の種類によっては保水性が小さくなり、天然の骨材に比ベブリーディング量がやや多くなったりブリーディング速度が速くなったりする場合があるので注意しなければならない。このような場合には、微粉末の使用、実績率の大きい骨材の使用、高性能AE減水剤の使用等材料の選定に加え、水セメント比の低減等の検討が必要である。

(e) 骨材の密度及び吸水率
① 骨材の強さは、密度及び吸水率によりある程度の判定ができる。通常、絶乾密度は2.5g/cm3以上、吸水率は3.0%(細骨材は3.5%)以下ならよいとされている(表6.3.3参照)。

しかし、砂利や砂の場合、一部の地方では、これを満足するものが入手できない場合もある。この場合は、絶乾密度は2.4g/cm3以上、吸水率は4.0%以下なら、コンクリートとして所要の性能が得られることを試し練り又は信頼できる資料等により確かめられれば、使用してよい。

表6.3.3 JIS A 5005 : 2020による砕石・砕砂の物理的性質

② 普通の石材の吸水率は表6.3.4に示すとおりであるが、概ね吸水率の少ないものほど堅硬、密実で良質の骨材になると考えられる。

表6.3.4 石材の吸水率

(f) 骨材の品質が乾燥収縮に及ぼす影響は大きく、JISの品質規格に適合する骨材であっても、それを用いたコンクリートの乾燥収縮ひずみができるだけ小さくなるものを選定することが望ましい。乾燥収縮ひずみが小さくなる骨材としては、良質の川砂利又は石灰石骨材が挙げられる。

(ウ) アルカリ骨材反応抑制対策

(a) アルカリ骨材反応に関しては、昭和60年頃から問題が顕在化し、平成元年には建設省の技術審議官通達、建築指導課長通知等が出されたが、平成14年には新たに「アルカリ骨材反応抑制対策について」(平成14年国官技第112号:技術審議官等通達)と運用のための「「アルカリ骨材反応抑制対策について」について」(平成14年国営技第55号:建築課長通達)の(別紙)「アルカリ骨材反応抑制対策(建築物)実施要領」が、平成15年には「アルカリ骨材反応抑制対策(建築物)実施要領に関する運用について」の事務連絡が出され、その後のJIS A 5308の改正、JIS Q1011(適合性評価一日本産業規格への適合性の認証ー分野別認証指針(レディーミクストコンクリート))の制定、「標仕」の改定を経て、その対策が確立されてきた。

(b) 「アルカリ骨材反応抑制対策(建築物)実施要領」における検査・確認の方法を、次に示す。

① アルカリシリカ反応性試験方法(化学法)による骨材試験は、施工着手前、工事中1回/6箇月、かつ、産地が変わった場合に、受注者等が公的試験機関に依頼して行う。また、試験に用いる骨材の採取にも受注者等が立ち会うことが原則となる。

② アルカリシリカ反応性試験方法(モルタルバー法)による骨材試験は、コンクリート生産工程管理用試験に規定される骨材のアルカリシリカ反応性試験方法(迅速法)で骨材が無害であることを受注者等が確認する。この場合も、施工着手前、工事中1回/6箇月、かつ、産地が変わった場合に、公的試験機関で行い、試験に用いる骨材の採取にも受注者等が立ち会うことが原則となる。

(c) 「標仕」では、砕石、砕砂、フェロニッケルスラグ骨材、銅スラグ細骨材、電気炉酸化スラグ骨材、砂利、砂及び再生骨材Hは、原則として、「アルカリシリカ反応性試験の結果が無害と判定されるもの」(アルカリシリカ反応性による区分Aのもの)を使用するとしているので、アルカリシリカ反応性による区分を、受注者等にレディーミクストコンクリート配合計画書及びアルカリシリカ反応性試験成績表で確認させておく必要がある。

なお、銅スラグ細骨材は、JIS A 5011-3において、”無害”のものに限定して使用することが規定されている。

アルカリシリカ反応性試験方法は、JIS A 1145(骨材のアルカリシリカ反応性試験方法(化学法))又は JIS A 1146(骨材のアルカリシリカ反応性試験方法(モルタルバー法))による。ただし、フェロニッケルスラグ骨材のアルカリシリカ反応性試験は、JIS A 1146による。また、再生骨材Hのアルカリシリカ反応性による区分、判定及び試験は、JIS A 5021の4.3(アルカリシリカ反応性による区分)、5.3(アルカリシリカ反応性)、7.7(アルカリシリカ反応性試験)による。

(d) レディーミクストコンクリートを製造する地域等によっては、上記の試験の結果が「無害と判定されないもの」や「試験を行っていないもの」(アルカリシリカ反応性による区分Bのもの)を使用せざるを得ない場合もある。その場合は、事前調査により設計担当者が区分Bのものを使用することを特記しなければならない。特記により区分Bの骨材を使用する場合は、「標仕」6.3.1(2)(イ) に基づいた対策を受注者等に提案させ、その内容を確認する。高炉セメントやフライアッシュセメントを、アルカリ骨材反応の抑制対策として使用する場合、高炉スラグ微粉末の混合比(分量)が40%以上の高炉セメントB種又はフライアッシュの混合比(分量)が15%以上のフライアッシュセメントB種を使用する。また、コンクリート製造業者から使用した混合セメントのセメント試験成紺間を取り寄せて、高炉スラグ微粉末又はフライアッシュの混合比(分量)を確認することが必要である。

なお、フェロニッケルスラグ骨材のアルカリシリカ反応抑制対策は、JIS A 5011-2の附属書Dによる。また、再生骨材Hについては、アルカリシリカ反応性による区分がBの場合、JIS A 5308の8.2項及び同附属書BのB.2項により、アルカリシリカ反応抑制対策の区分はアルカリシリカ反応抑制効果のある混合セメントなどを使用する抑制対策しか規定されていないため、コンクリート中のアルカリ総量を規定する抑制対策を適用することはできない。

(エ) 高炉スラグ粗骨材を使用する場合は、JIS A 5011-1に基づいて、使用する骨材の絶乾密度、吸水率及び単位容積質量が、同JISの区分Nを満足することを受注者等に確認させ、その結果を報告させることが必要である(表6.3.5参照)。

なお、高炉スラグ粗骨材は、普通骨材より吸水率が大きく気乾状態で用いると練混ぜ、運搬及び打込み中にフレッシュコンクリートの品質が変動しやすいので、事前に散水により吸水させて用いることが望ましい。

(オ) 電気炉酸化スラグ骨材は、JISマーク表示認証製品で、生産工場からレディーミクストコンクリート工場に直接納入されていること及び電気炉酸化スラグ粗骨材の絶乾密度による区分がNであること(表6.3.5参照)並びに再生骨材Hは、 JISマーク表示認証製品であることを受注者等に確認させ、その結果を報告させることが必要である。

表6.3.5 JIS A 5011-1 : 2018による高炉スラグ粗骨材(区分N)及び
JIS A 5011-4 : 2018による電気炉酸化スラグ粗骨材(区分N)の材質

(カ) 粗骨材の最大寸法等

(a) 粗骨材の最大寸法
粗骨材は、鉄筋相互間及び鉄筋とせき板との間を容易に通る大きさでなければならない。粗骨材の最大寸法は「標仕」において次のように定めている。

① 砕石、高炉スラグ粗骨材、電気炉酸化スラグ粗骨材及び再生粗骨材Hは 20mmとする。また、砂利は25mmとする。

② 基礎等で断面が大きく鉄筋量の比較的少ない部材の場合は、「標仕」5.3.5[鉄筋のかぶり厚さ及び間隔]の範囲で、砕石、高炉スラグ粗骨材及び再生粗骨材Hは25mm、また、砂利は40mmとすることができる。

③ 鉄筋のあきは、粗骨材の最大寸法の1.25倍以上とする(「標仕」5.3.5 (4)(ア) 参照)。

④ 無筋コンクリートの粗骨材の最大寸法は、コンクリート断面の最小寸法の 1/4以下とする。ただし、捨コンクリート及び防水層の保護コンクリートの場合は25mm以下とする(「標仕」6.14.2(1)参照)。

(b) 骨材の粒度及び粒形
① 骨材は、適切な粒度分布のものでなければならない。粒度の良否によってコンクリートのワーカビリティーや単位セメント最に著しい差が生じ、ひいてはコンクリートの強度や耐久性にも影響を与える。

② 骨材の形は、球形に近いものが理想的で、偏平、細長のもの、かど立っているものなどは、コンクリートのワーカビリティーを悪くし、同一水セメント比で同一スランプを得るための細骨材率が大きくなり、単位水量、単位セメント量も多くなる。また、偏平、細長のものは、コンクリートが外力を受けたときに不均ーな応力分布が生じて、破壊しやすいためにコンクリートの強度も低下する。

③ 粒度分布を表すには次のような方法があり、通常1)及び2)が用いられる。
1) 各ふるいの通過率
2) 粗粒率(FM)
3) 各ふるいの累加残留率
4) 各ふるいの残留率

④ コンクリートの品質を確保して圧送性を良くするには、骨材の粒度分布が適切であるとともに 0.3mm以下の細骨材が15~30%混入していることが望ましい。

(キ) その他留意が必要な骨材の品質

(a) 骨材の単位容積質量・実績率
① 単位容積質量は、単位容積当たりの骨材質量(kg/ℓ)で、骨材の粒度が適切であれば、最大寸法が大きいほど単位容積質量は大きい。

② 実績率は、骨材を容器に詰めた場合、どの程度隙間なく詰まっているかを表す指標で、6.3.1式より求める。空隙率は 6.3.2式による。

③ 同一粒度、同一密度の骨材では、実績率が大になるほど骨材の粒形が良いことになる。また、骨材の密度、最大寸法及び粒度が同様な場合には、粒度分布が良いほど実績率は大となる。

④ 骨材に対応する標準的実績率を表6.3.6に示す。

表6.3.6 骨材の実績率の標準的な値

(b) 骨材中の泥分
泥分が骨材表面に付着していると、骨材とセメントペーストとの付着を妨げ、コンクリートの強度を低下させる。また、コンクリート中に混合している場合は、単位水量が増加し、体積変化も大きく、ひび割れも発生しやすい。

(c) 細骨材の有機不純物
有機不純物としては、腐植土、泥炭質等があり、これらに含まれるフミン酸やタンニン酸の量が多いと、セメントペースト中のCa(OH)2と反応して有機酸石灰塩を生じ、コンクリートの硬化を妨げ、強度や耐久性を低下させる場合がある。

(d) 細骨材中の塩化物
① コンクリート中の鋼材は、コンクリートのpHが10以上の場合は、鋼の表面が鉄の水酸化物Fe(OH)2の不働態皮膜で覆われているので錆は発生しないが、多量の塩化物が混合すると、塩化物イオンによって不働態皮膜が破壊されて錆が発生する。

② JIS A 5308附属書A(規定)では、砂に含まれる塩化物枯をNaCl換算で0.04%以下と規定しているが、2003年のJIS R 5210(ボルトランドセメント)の改正により普通ボルトランドセメントの塩化物イオンが 0.02%以下から0.035%以下となった。これにより、コンクリートの各材料の塩化物イオンの規格上限値でコンクリート中の塩化物イオン量を算出すると0.30 kg/m3を超える場合があるので、受注者等にレディーミクストコンクリート配合計画書でコンクリート中の塩化物イオン量が0.30kg/m3を超えないことを確認させ、その結果を報告させるようにするとよい。

なお、プレテンション方式のプレストレストコンクリート部材に用いる場合は0.02%以下とすることになっている。

(e) 骨材を混合して使用する場合

① 最近では1種類の骨材だけでは所要の品質や量を確保することが困難となり、複数の骨材を混合して使うことが多くなった。

② 骨材を混合して使用する場合は、JIS A 5308附属書A (規定)のA.9[骨材を混合して使用する場合]による。

1) 同一種類の骨材(例:川砂利と陸砂利(玉砕も含む。)、海砂と山砂)を混合して使用する場合は、混合したものの品質が所定の規定に適合しなければならない。ただし、混合前の各骨材の絶乾密度、吸水率、安定性及びすりへり減量については、それぞれの骨材の規定に適合しなければならない。

2) 異種類の骨材(例:川砂利と砕石、海砂と砕砂あるいは高炉スラグ細骨材等)を混合して使用する場合は、混合前の骨材の品質がそれぞれの規定に適合しなければならない。ただし、粒度調整や海砂の塩化物量の低減目的に混合する場合には、粒度と塩化物量については、混合したものが所定の規定に適合していればよい。

(3) 水

(ア) 水は、コンクリートの凝結時間、硬化後のコンクリートの強さ等の諸性質、鋼材の発錆等に影響があり、極めて重要な材料といえる。

(イ) 一般的に、セメントの水和に必要な水量は、セメント質量の約40%といわれ、施工時に必要な水量の内、残りの部分はコンクリートのワーカビリティーを良くするものであり、コンクリートの硬化に関与しない余剰水となる。また、単位水量が多いと乾燥収縮が大きくなる場合や透水性が高くなる場合があり、耐久性が低下しやすい。

(ウ) 水中の不純物が鉄筋コンクリートに与える影響
(a) 一般的に、アルカリ性の強い水はセメントの凝結を遅くし、弱酸性の水は凝結を早め、強酸性では硬化しにくくなる。

(b) 苦土や石灰は、セメントの安定性を低下させる。

(c) 塩化物や塩素は、鉄筋の腐食を助長する。

(d) 水の不純物の種類と量の限度は、使用するセメントの組成、使用量等によって異なり、規定しにくいとされているが、濃度が1,000ppm以下ならば、ほとんど影響がないといわれている。

(エ) 水の使用基準等については、JIS A 5308附属書C (規定)があり、この抜粋を次に示す。

JIS A 5308 : 2019

附属書C(規定) レディーミクストコンクリートの練混ぜに用いる水

C.1 適用範囲
この附量書は、レディーミクストコンクリートの練混ぜに用いる水(以下、水という。)について規定する。

C.2 区分
水は、上水道水、上水道水以外の水及び回収水に区分する。

C.3用語及び定義
この附属書で用いる主な用語及び定義は,箇条3によるほか次による。

C.3.1 上水道水以外の水
河用水.湖沼水,井戸水.地下水などとして採水され,特に上水道水としての処理がなされていないもの及び工業用水。ただし,回収水を除く。

C.4 上水道水
上水道水は、特に試験を行わなくても用いることができる。

C.5 上水道水以外の水
上水道水以外の水の品質は、C.8.1の試験方法によって試験を行ったとき、表C.1に示す規定に適合しなければならない。

表C.1-上水道水以外の水の品質

C.6 回収水
C.6.1 品質
回収水の晶質は.C.8.2の試験方法によって試験を行ったとき.表C.2に示す規定に適合しなければならない。ただし,その原水は.C.4又はC.5の規定に適合しなければならない。

なお、スラッジ水を上水道水、上水道水以外の水、又は上澄水と混合して用いる場合の品質の判定は、スラッジ固形分率が3%になるように.スラッジ水の濃度を 5.7%に調整した試料1)を用い、C.8.2.4及びC.8.2.5の試験を行う。

注1) スラッジ水を希釈し濃度調整する場合には.C.4及びC.5に適合する水を用いる。

表C.2 – 回収水の品質

C.6.2 スラッジ固形分率の限度
a) スラッジ水を用いる場合には、スラッジ固形分率が3%を超えてはならない。

なお、レディーミクストコンクリートの配合において、スラッジ水中に含まれるスラッジ固形分は、水の質量には含めない。

b) スラッジ固形分率を 1%未満で使用する場合には.表10の目標スラッジ固形分率の欄には、”1%未滴”と記入することとし、表11のスラッジ固形分率の欄にも”1 %未満”と記入する。この場合.スラッジ水は練混ぜ水の全量に使用し、かつ、濃度の管理期間ごとに1 %未満となるよう管理しなければならない。

なお、このスラッジ固形分率を1 %未満で使用する場合には、スラッジ固形分を水の質量に含めてもよい。

C.6.3 スラッジ水の管理
スラッジ水の管理は、次による。また、安定化スラッジ水の管理は、バッチ濃度調整方法だけとし、C.7の管理も追加する。

a) バッチ濃度調整方法2)、又は連続濃度測定方法2)を用いる。

注2) バッチ濃度調整方法は、スラッジ水の濃度を一定に保つ独立した濃度調整槽をもつ場合に用いることができる管理方法である。スラッジ固形分率を 1%未満で使用する場合は、この方法による。独立した濃度調整槽をもたない場合には、スラッジ水の濃度を連続して測定できる自動濃度計を設置して測定することによる連続濃度測定方法を用いればスラッジ水の管理ができる。

b) C.6.2に適合するように、スラッジ水の管理状況に対応して、コンクリートに使用するスラッジ水の濃度を定めて管理する。

c) バッチ濃度調整方法を用いる場合には、スラッジ水の濃度を測定・記録し、目標スラッジ固形分率となるようにスラッジ水の計量値を決定して、スラッジ水を使用する。

なお、スラッジ水の濃度の測定は、1日1回以上、かつ、濃度調整の都度行う。

d) 連続濃度測定方法を用いる場合には、スラッジ水を使用する度にその濃度を自動濃度計によって測定・記録し、自動演算装置を用いて目標スラッジ固形分率となるようにスラッジ水の計量値を決定して.スラッジ水を使用する。

e) スラッジ水の濃度の測定精度の確認は,少なくとも3か月に1回の頻度で.C.8.2.6によって行う。また、スラッジ水の濃度の測定方法として自動濃度計を用いる場合は、始業時にスラッジ水の密度から自動濃度計の表示値を確認しこれを記憶する。

f) スラッジ水の濃度及び測定器具の精度確認の記録は、購入者からの要求があれば、スラッジ固形分率の算出根拠として提出する。

C.7 水を混合して使用する場合
2種類以上の水を混合して用いる場合には、それぞれがC.4. C.5又はC.6の規定に適合していなければならない。

JIS A 5308: 2019

(4) 混和材料

(ア) 混和材料の使用目的は、概ね次のとおりである。
(a) ワーカビリティーの改良
(b) 長期材齢又は初期材齢における強度の増大
(c) 水密性の増大
(d) 乾燥収縮の低減
(e) 耐久性の向上

(イ) 混和材料の分類を、図6.3.6に示す。


図6.3.6 混和材料の分類

混和材料について「標仕」6.3.1(4)では、種類及び適用は特記によるとし、特記がなければ、種類は次によるとしている。

(a) 混和剤の種類は、JIS A 6204(コンクリート用化学混和剤)によるAE剤、AE減水剤又は高性能AE減水剤とし、化学混和材の塩化物イオン(Cl-)量による区分は、Ⅰ種とする。また、防錆剤を併用する場合は、JIS A 6205(鉄筋コンクリート用防せい剤)による防錆剤とする。

(b) 混和材の種類は、JIS A 6201(コンクリート用フライアッシュ)によるフライアッシュのI種、II種若しくはⅣ種、JIS A 6206(コンクリート用高炉スラグ微粉末)による高炉スラグ微粉末、JIS A 6207(コンクリート用シリカフューム)によるシリカフューム又はJIS A 6202(コンクリート用膨張材)による膨張材とする。

(ウ) JIS A 6204(コンクリート用化学混和材)の抜粋を次に示す。

なお、JIS A 6204は2011年の改正で、6.2のコンクリート試験における空気量は、基準コンクリートの空気量に3.0%を加えたものに対して、0.5%を超える差があってはならないこととなった。また、練混ぜのバッチ数は1バッチとすること、圧縮強度試験用供試体の養生温度は20±2℃とすること、コンクリートの試験回数は、1バッチについて1回とすること及び管理試験の名称を性能確認試験と改め、6箇月に1回の頻度で実施することとなった。

JIS A 6204:2011

1 適用範囲
この規格は、コンクリート用化学混和剤(以下、化学視和剤という。)として用いるAE剤、高性能減水剤、硬化促進剤、減水剤、AE減水剤、高性能AE減水剤及び流動化剤について規定する。

3 用語及び定義
この規格で用いる主な用語の定義は,JIS A 0203によるほか、次による。

3.1 化学混和剤
主として、その界面活性作用及び/又は水和調整作用によってコンクリートの諸性質を改善するために用いる混和材。

3.2 AE剤
コンクリートなどの中に、多数の微細な独立した空気泡を一様に分布させ、ワーカビリティー及び耐凍害性を向上させる化学混和剤。

3.3 高性能減水剤
所要のスランプを得るのに必要な単位水品を大船に減少させるか又は単位水量を変えることなくスランプを大幅に増加させる化学混和剤。

3.4 硬化促進剤
セメントの水和を早め.初期材齢の強度を大きくする化学混和剤。

3.5 減水剤
所要のスランプを得るのに必要な単位水量を減少させる化学混和材。

3.6 AE減水剤
空気連行性能をもち,所要のスランプを得るのに必要な単位水量を減少させる化学混和剤。

3.7 高性能AE減水剤
空気連行性能をもち,AE減水剤よりも高い減水性能及び良好なスランプ保持性能をもつ化学混和剤。

3.8 流動化剤
あらかじめ練り混ぜられたコンクリートに添加し、これをかくはんすることによってその流動性を増大させることを主たる目的とする化学混和剤。

3.9 標準形
化学混和剤の種類で.コンクリートの凝結時間をほとんど変化させないもの。

3.10 遅延形
化学混和剤の種類で.コンクリートの凝結を遅延させるもの。

3.11 促進形
化学混和剤の種類でコンクリートの凝結及び初期強度の発現を促進させるもの。

3.12 基準コンクリート
化学混和剤の性能を試験する場合に基準とする化学混和剤を用いないコンクリート。ただし.流動化剤の性能を試験する場合にはAE剤を使用する。

3.13 試験コンクリート
化学混和剤の性能を試験する場合に試験の対象とする化学混和剤を用いたコンクリート。

3.14 形式評価試験
製品を開発した当初に性能確認として行う全項目試験。

3.15 性能確認試験
形式評価試験で確認された性能と同等の性能をもつことを定期的に確認するために、その一部項目について行う試験。

4 種類
化学混和剤の種類は.性能によって表1、塩化物イオン(Cl-)量によって表2のとおり、それぞれ区分する。

表1- 化学混和剤の性能による区分

表2- 化学混和剤の塩化物イオン(Cl)量による区分

5 品質
5.1 性能
化学混和剤の性能は、6.2によって試験を行ったとき、表3に適合しなければならない。(6.2省略)

表3-化学混和剤の性能

5.2 塩化物イオン(Cl)量
塩化物イオン量は.6.3によってコンクリート中の量を求め.その値が表2に適合しなければならない。(6.3省略)

5.3 全アルカリ量
全アルカリ量は、6.4によってコンクリート中の量を求め、その値が0.30kg/m3以下でなければならない。(6.4省略)

(エ) AE剤
AE剤は、コンクリート中に無数の独立した微細な気泡を連行させることができる。この気泡は、コンクリートに次のような効果をもたらす。

① ワーカビリティーが良くなる(気泡のボールベアリング作用による。)。
② 単位水量を減少させることができる(一般的にプレーンコンクリートに比べて8%程度減少できる。)。
③ コンクリートの凍結融解に対する抵抗性を増し、耐久性を向上させる。
④ 中性化に対する抵抗性を増大させる。
⑤ 圧縮強度は、空気量にほぼ反比例して低下する。

(オ) AE減水剤

(a) AE減水剤は性能に応じて、標準形、遅延形及び促進形に分けられる。その用途等は次のとおりである。
① 標準形は、主として一般のコンクリートに用いられる。
② 遅延形は、コンクリートの凝結を遅らせ、暑中コンクリートやマスコンクリート等に用いる場合がある。
③ 促進形は、コンクリートの初期強度の発現を促進し、寒中コンクリート等に用いる場合がある。

(b) AE減水剤は、セメント粒子に対する分散作用と空気連行作用を併有する混和剤で、所要のコンシステンシーを得るための単位水量は、プレーンコンクリートに比べて 12~ 16%減少できる。

(カ) 研性能AE減水剤

高性能AE減水剤は、高い減水性とスランプ保持性能を有する混和剤で、凝結時間が通常のコンクリートとあまり変わらない標準形と、暑中コンクリートやマスコンクリート等に適した遅延形とがある。

その主成分の化学的組成からナフタリン系、ポリカルボン酸系、メラミン系、アミノスルフォン酸系に分類される。ただし、この分類は、あくまで便宜的なもので、同系統に属していてもコンクリートに用いたときの性能は、主成分の化学構造が全く同じでないこと、配合されている副次成分の違いなどから必ずしも同ーではない。

高性能AE減水剤は、従来のAE剤やAE減水剤と同様にプラントでミキサーに投入し、他の材料と同時に練り混ぜる方式により、プレーンコンクリートに対し減水率を 16~ 25%程度にすることができる化学混和剤であり、特にスランプロス防止に重点をおいて開発されたものである。

高性能AE減水剤の主な機能は、①高いセメント分散作用、②スランプ保持作用であり、用途としては次のようなものが挙げられる。

なお、最近では、JIS A 6204の規格に適合し、従来の化学混和剤にはない新たな機能を付与したタイプが使用されている。例えば、収縮低減成分や増粘成分を各種減水剤などと一液化したものがあり、これらは一般に「高機能型(タイプ)」と呼ばれている。

① 単位水量上限規制への対応
② コンクリートの高耐久性化(単位水量の大幅低減)
③ 高流動コンクリートの製造
④ 高強度コンクリートの製造
⑤ 単位セメント量低減による水和熱の低減等

(キ) 流動化剤

流動化剤は、あらかじめ練り混ぜられたコンクリートに添加、かくはんし流動性を増して、コンクリートの品質と施工性の改善をする混和剤である。
コンクリートを流動化する場合は、流動化する前のレディーミクストコンクリートからのスランプの増大量と、流動化剤によって混入されるアルカリ量をあらかじめ生産者に通知する必要がある。

なお、 I類コンクリートであっても、レディーミクストコンクリートの受入れ後、荷卸し地点等で流動化剤を添加する場合は、JIS Q 1001(適合性評価-日本産業規格への適合性の認証-一般認証指針)及びJIS Q 1011(適合性評価-日本産業規格への適合性の認証-分野別認証指針(レディーミクストコンクリート))の認証範囲から外れる可能性がある。このような場合には、II類コンクリートとして扱わなくてはならないので、その使用には注意が必要である。

(ク) フライアッシュ

(a) フライアッシュは、燃料として微粉炭を使用している火力発電所のボイラーの煙道に設けられた集じん機で回収される鉱物質の微粉で、人工ポゾランの一種である。良質なフライアッシュは粒子表面が滑らかで球状を呈しているので、 AE剤による気泡と同様な作用をする。

(b) 良質なフライアッシュを混合すると同一スランプのコンクリートを得るのに、混合率(内割り)10%(質量比)当たり単位水量を3~4%程度減らすことができる。

(c) フライアッシュは、JIS A 6201(コンクリート用フライアッシュ)のI種、II種又はⅣ種に適合するものとし、ワーカビリテイーや圧送性の改善、ブリーディングの減少、水和熱の抑制等の目的で、セメントの一部として(内割り)あるいは骨材の一部として(外割り)用いられる(内割り、外割りについては (f)参照)。フライアッシュの品質を表6.3.7に示す。

表6.3.7 フライアッシュの品質(JIS A 6201 : 2015)

(d) フライアッシュを内割りに混合する場合の混合率の限度は、セメント量の10%以内とする。

(e) フライアッシュの混合によりコンクリートの中性化が促進されるといわれているので、鉄筋に対するコンクリートのかぶり厚さを確保するよう特に注意する。

(f) フライアッシュの混合の内割り、外割り

① フライアッシュを「内割りに混合する」とは、図6.3.7のような割合に混合することをいう。「標仕」6.3.2(イ)(f)③の場合に適用する。


図6.3.7 フライアッシュの混合の内割り

② フライアッシュを「外割りに混合する」とは、図6.3.8のような割合に混合することをいう。「標仕」6.3.2(イ)(f)②の場合に適用する。


図6.3.8 フライアッシュの混合の外割り

6.3.2 コンクリートの調合

コンクリートの計画調合は、所要のスランプ、空気量、強度及び耐久性が得られ、かつ、「標仕」2節に示される各規定の要求事項を満足するよう、次の項目に注意して定めなければならない。

(ア) 調合管理強度及び調合強度

(a) 調合管理強度
平成19年版「標仕」では、調合管理強度(Fm)に相当する値は、設計基準強度(Fc)、構造体コンクリートと供試体強度との差(ΔF=3N/mm2)、気温によるコンクリート強度の補正値(T)を考慮して(Fc + ΔF + T)としていたが、平成 22年版「標仕」からは、調合管理強度は、( ΔF+T)に代わって、セメントの種類及びコンクリートの打込みから材齢28日までの予想平均気温に応じて定められた構造体強度補正値(S)を取り入れ、(Fc+S)に改められている。

(b) 構造体強度補正値(S)は、セメントの種類、予想平均気混の範囲に応じて「標仕」表6.3.2に示すように、3N/mm2又は6N/mm2としている。また、平成28年版「標仕」からは、平成12年建設省告示第1446号(平成28年国交省告示第814号)の改正に伴い「標仕」表6.3.1に普通エコセメントが追加され、「標仕」表6.3.2に「JASS 5」の27.5 b項を基に普通エコセメントの構造体強度補正値(S)が追加された。

なお、平成28年3月に改正された告示「コンクリート強度に関する基準」では、コンクリート強度の確認方法として、標準養生(水中又は飽和水蒸気圧 中の養生に限る。)による方法とこれに使用する構造体強度補正値が第1第三 号として追加されたが、規定された平均気温の範囲とその構造体強度補正値は、「JASS 5」に示される構造体強度補正値28S91と若干異なる数値となっている。しかし、同告示と同時に国土交通省住宅局建築指導課長から発出された技術的助言 国住指第4893号「コンクリート強度並びに型わく及び支柱の取り外しに関する基辿の改正について」では、告示第1102号第1第三号に規定する構造体強度補正値以外の値であっても、「JASS 5」に基づく管理方式については、同告示のただし書きの適用があるものとして取り扱ってよい、とされている。

「標仕」では、平成22年版より「JASS 5」の2009年版を基にコンクリートの調合設計に構造体強度補正値(S)の考え方を祁入してコンクリートの品質管理を行っており、平成28年版「標仕」においても、構造体強度補正値(S)は、「JASS 5」に示される構造体強度補正値28S91を基に定めた値(「標仕」表6.3.2)としている。

参考に、昭和56年建設省告示第1102号(最終改正平成28年国土交通省告示第502号)(告示「コンクリート強度に関する基準」)及び技術的助言 国住指第4893号平成28年3月17日「コンクリート強度並びに型わく及び支柱の取り外しに関する基準の改正について」の抜粋を下記に示す。

設計基準強度との関係において安全上必要な
コンクリート強度の基準を定める等の件

(昭和56年建設省告示第1102号
最終改正 平成28年3月17日 国土交通省告示第502号)

建築基準法施行令(昭和二十五年政令第三百三十八号)第七十四条第一項第二りの規定に基づき、設計基準強度との関係において安全上必要なコンクリートの強度の基準を次の第一のように定め、同条第二項の規定に基づき、コンクリートの強度試験を次の第二のように指定する。

第一 コンクリートの強度は、設計基準強度との関係において次の各号のいずれかに適合するものでなければならない。ただし、特別な調査又は研究の結果に基づき構造耐力上支障がないと認められる場合は、この限りでない。

中略

三 コンクリートの圧縮強度試験に用いる供試体で標準養生(水中又は飽和蒸気中で行うものに限る。)を行ったものについて強度試験を行った場合に、材齢が二十八日の供試体の圧縮強度の平均値が、設計基準強度の数値にセメントの種類及び養生期間中の平均気温に応じて次の表に掲げる構造体強度補正値を加えて得た数値以上であること。

コンクリート強度並びに型わく及び支柱の取り外しに関する基準の改正について(技術的助言)

(国住指第4893号平成28年3月17日)

建築基準法施行令第74条第1項第2号及び同令第76条第2項の規定に払づく標記基準については、平成28年3月17日付国土交通省告示第502号及び同日付国土交通省告示第503号として別添のとおり公布されたので通知する。なお、「コンクリート強度に関する基準の制定について(通知)」(昭和56年6月15日付け建設省住指発第160号、建設省住宅局建築指導課長通知)は廃止する。

中略

1 コンクリート強度に関する基準(昭和56年建設省告示第1102号)の改正について

(1) 本告示は、設計基準強度との関係において安全上必要なコンクリート強度の基準及びコンクリートの強度試験方法に1対する基準を定めたものである。
本告示改正は、新たなコンクリート強度の管理方式のひとつとして、標準養生(水中又は飽和水蒸気圧中で行う場合に限る。以下同じ。)供試体による場合について、材齢が28日までの供試体の圧縮強度の平均値が、設計基準強度の数値に構造体強度補正値を加えた数値以上であることとするコンクリートの強度の基準を定めたものである。

これら以外の管理方式であっても、適切な研究的裏付けのあるものについては、ただし書の適用があるものとして取り扱って差し支えない。

(2) 第1第1号に規定する現場水中養生に類する養生は、現場における湿砂中養生等所要の水分を補給しうる状態での養生を、同第2号のコア供試体に類する強度に関する特性を有する供試体は、現場封かん養生供試体等構造体中のコンクリートと類似の温度履歴を有する養生を行った供試体をそれぞれさすものである。

(3) 第1第3号に規定する構造体強度補正値は、既往の研究成果等を踏まえ、コンクリート打設時の外気温並びに部材の種類及び寸法等を考慮した上で、標準養生供試体の材齢が28日における圧縮強度の平均値とコア供試体又はこれに類する強度に関する特性を有する供試体の材齢91日における圧縮強度の平均値の差について、0以上の数値として定めたものである。これ以外の強度補正値であっても「建築工事標準仕様書 JASS 5 鉄筋コンクリート工事」((-社)日本建築学会)に基づく管理方式によるものなど、適切な研究的裏付けのあるものについては、ただし書きの適用があるものとして取り扱って差し支えない。

(4) 第1第1号及び同第2号に規定する強度試験を行うコンクリートの材齢について、コンクリートの強度発現特性を踏まえ、強度試験により28日(又は91日)より前に必要な強度が発現していることを確認した場合にあっては、28 日(又は91日)時点で強度試験を行わない場合でも、28日(又は91日)時点で必要な強度が発現しているものと扱って差し支えない。

(5) 供試体強度の平均値を求める場合の供試体数及び養生方法といった管理方式等に関する具体的な運用については、「建築工事標準仕様書JASS 5鉄筋コンクリート工事」((-社)日本建築学会)又は「建築研究資料No.169高強度領域を含めたコンクリート強度の管理基準に関する検討」(国立研究開発法人 建築研究所)等を参考とされたい。

(c) 調合強度(F)は、一般的には標準養生した供試体の材齢m日における圧縮強度で表し、6.3.3式を満足するように定めることになる。

F ≧ Fm + α × σ (N/mm2)・・・(6.3.3式)

ここで、αは、コンクリートの許容不良率に応じた正規偏差で、σは、強度のばらつきを表す標準偏差である。「JASS 5」では、αを許容不良率4%に相当する1.73を用いている。また、σは発注するレディーミクストコンクリート工場の実績に基づいた値を用いればよい。もし発注するコンクリートの生産実績が少ないなどの場合には、2.5N/mm2又は0.1Fmの大きい方の値を用いるとよい。

(イ) 調合条件
コンクリートに要求される品質として、所要の強度を確保すること、打込み時 のワーカビリティーを確保することは当然であるが、近年、鉄筋コンクリート造の構造物が劣化している様々な事例が指摘されており、コンクリートの耐久性(コンクリート中の塩化物含有量、中性化、ひび割れ、海塩粒子、アルカリ骨材反応 による影響等に対して)を確保することが、コンクリート構造物の継続的利用に極めて重要となっている。これらの理由から「標仕」では次の規定を設けている。

なお、以下の水セメント比の最大値、単位水量の最大値及び単位セメント量の最小値とは、レディーミクストコンクリート工場において調合設計を計画した時のそれぞれの目標値のことである。

(a) 「標仕」では、荷卸し地点における空気量は、4.5%と規定されている。
AE剤、AE減水剤、高性能AE減水剤を用いて、コンクリート中に微細な空気泡を連行すると、連行空気量にほぼ比例して所定のスランプを得るのに必要な単位水量を低減でき、ワーカビリティーが改善されるとともに、凍結融解作用に対する抵抗性が増大する。しかし、空気量が6%以上になるとそれ以上空気量を増やしてもフレッシュコンクリートの品質は改善されなくなり、空気量が3%未満では凍結融解作用に対する抵抗性の改善に対する効果が少ない。このため空気量の確認時期・地点を荷卸し地点とし、その時のコンクリートの空気量を4.5%としている。

(b) 鉄筋コンクリートの一般的な劣化は、コンクリート表面からの水・炭酸ガス、塩化物その他の浸入性物質によりもたらされるが、これらの劣化要因からコン クリートを健全に守るためには、一般的に水セメント比を小さくすればよい。このため強度上必要な水セメント比とは別にコンクリートのワーカビリティー・均一性・耐久性を確保するために水セメント比(W/C)の最大値を 以下のように定めている。

① 平成22年版「標仕」では、普通ボルトランドセメント及び混合セメントのA種の水セメント比の最大値(上限値)は65%、混合セメントのB種は 60%とされていたが、平成25年版「標仕」から、新たに早強ボルトランドセメント及び中庸熱ボルトランドセメントを使用する場合は65%、低熱ボルトランドセメントを使用する場合は60%とする規定が追加されている。

また、平成28年版「標仕」6.3.1 (a)(1)で追加された普通エコセメントについては、「JASS 5」及び国立研究開発法人 建築研究所の「建築研究質料 No.144」等を参考に、以下の事由から水セメント比の最大値を55%とした。

a) 普通エコセメントを使用するコンクリートの中性化深さは、普通ボルトランドセメントを使用する同一水セメント比のコンクリートよりも大きくなる。

b) 普通ボルトランドセメントを使用するコンクリートと同程度の圧縮強度を得るためには、普通エコセメントを使用するコンクリートの水セメント比を3~5%程度小さくすることが必要である。

② 6.3.1(2)(イ)(a)でも記したように、平成12年建設省告示第1446号の一部改正に伴って平成28年版「標仕」からは、再生骨材Hを使用するコンクリートを建築物の基礎、主要構造部へ適用できることとなった。ただし、再生骨材H以外の他の骨材を使用するコンクリートと同程度の圧縮強度を得るためには、再生骨材Hを使用するコンクリートの水セメント比を若干小さくする必要があることから、水セメント比の最大値が60%とされた。

(c) 「標仕」では、単位水量の最大値を185kg/m3と規定するとともに、コンクリートの強度、気乾単位容積質量、ワーカビリティー、スランプ及び構造体コンクリートの仕上り状態が「標仕」2節に規定される品質を満足する範囲で可能な限り小さくするよう規定されている。

近年、良好な砂利、砂に代わり、砕石、砕砂が多用されるようになると、スランプを一定値以下に抑えても単位水量は大きくなる一方であり、コンクリートの乾燥収縮率の増大が懸念されている。その一方で、最近は高性能AE減水剤によりコンクリートのスランプを比較的容易に変えることができるようになり、単位水量が185kg /m2以下でもスランプ18cmにすることが容易となっている。このような理由から、コンクリートの品質を確保するためにスランプの規制以外に単位水量の制限が設けられている。

(d) 「標仕」では、単位セメント量の最小値を270kg/m3とし、かつ、(b)の水セメント比及び(c)の単位水量から算出した数値とすることが規定されている。
なお、単位セメント量は、6.3.4式によって求められる。

C = W / x × 100 ・・・(6.3.4式)
C:単位セメント量(kg/m3
W:単位水量(kg/m3
x :水セメント比(%)

単位セメント量は、水和熱及び乾燥収縮によるひび割れを防止する観点から可能な限り少なくすることが望ましい。しかし、単位セメント量が過小であるとコンクリートのワーカビリティーが悪くなり、型枠内へのコンクリートの充填性の低下、豆板や巣、打継ぎ部における不具合の発生、水密性、耐久性の低下等を招きやすい。このためコンクリートの強度を確保するための条件とは別に単位セメント量の最小値が規定されている。

(e) 細骨材率
「標仕」では、「コンクリートの品質が得られる範囲内で、適切に定める」と規定されている。一般的に、コンクリートの単位水量を可能な限り小さくし、強度や耐久性を最大にするには、所要のワーカビリティーが得られる範囲内で 細骨材率を最小にすることが重要となる。ただし、細骨材率を小さくし過ぎると一般的に所要のスランプを得るための単位水量は減るが、がさがさのコンクリートとなり、また、スランプの大きいコンクリートでは、粗骨材とモルタルとが分離しやすくなり、ワーカビリティーが低下する。

一方、細骨材率を大きくすると所要のスランプを得るための単位水量を多く必要とし、流動性の悪いコンクリートとなる。

なお、レディーミクストコンクリート工場では、所要のワーカビリティーが得られる範囲内で単位水量が最小になるように試験により最適な細骨材率を定めている。

(f) 混和材料
① 混和剤の使用量
AE剤については、所定の空気量が得られるようにその使用量を定める。
AE減水剤については、セメントに対する定められた質量比等の範囲内で使用量を定め、空気量については、空気量調整剤(AE剤)で所定の空気量が得られるように調整する。

高性能AE減水剤については、セメントに対する定められた質量比等の範囲内で単位水量及びスランプが得られるように使用量を定める。また、空気量については、空気量調整剤(AE剤)で所定の空気量が得られるように調整する。

なお、6.3.1(1)(ア)(g)でも記したように、普通エコセメントは塩化物イオン量を含め化学成分及び鉱物組成が普通ボルトランドセメント等と異なる部分があり、高性能AE減水剤の主成分によって添加量や得られる効果、性能が異なる場合があるので、事前の試し練りが必要がある。

② 良質なフライアッシュは、球形をしており、ボールベアリング効果により、ポンプの圧送性を改善する。普通ボルトランドセメントを用いたコンクリートで圧送が困難な場合、フライアッシュIl種又はⅣ種を外割りで混合することができる(6.3.1(4)(ク)(f)②参照)。

③ 普通ボルトランドセメントを用いたコンクリートで水セメント比の制限等により、強度上必要なセメント量を超える場合は、その部分をセメント全量の10%(質量比)の範囲でフライアッシュI種又はⅡ種に置き換えることにより、単位水量の低下、単位セメント量の低下等が図られ、乾燥収縮等を改善することができる(6.3.1(4)(ク)(f)①参照)。

また、「標仕」では記載されていないが、高炉スラグ微粉末を適量混合することにより、水和熱の抑制、アルカリ骨材反応の抑制、硫酸塩や海水に対する化学抵抗性の向上、水密性の向上等が期待できる。

④ 上記①から③以外で混和材料として多く用いられるものには、流動化剤、膨張材、防錆剤等があるが、その使用方法、使用量については、コンクリートの種類や使用目的によって異なるので、使用が特記された場合は、コンクリートの所定の性能が得られるよう試し練り及び信頼できる資料を受注者等に提出させて確認する。

(g) 塩化物量
コンクリートは、通常pH= 12.5~13 程度の強アルカリ性を呈し、その中に埋め込まれた鉄筋の表面は薄い酸化皮膜で覆われ、不働態化して腐食から保護されている。

しかし、大気中の炭酸ガスやその他の酸性物質の浸透によって徐々にアルカリ性が失われ、中性化が鉄筋の位置まで進行すると鉄筋の腐食に対する保護作用を失い、さらに、水分と酸素が供給されると鉄筋は腐食し始める。

コンクリート中に一定量以上の塩化物が存在すると、塩化物イオンの作用によってコンクリートの中性化が進行していなくても、不働態皮膜が破壊され、鉄筋は腐食し始める。

これらの理由から、「標仕」ではコンクリートに含まれる塩化物の値に制限が設けられ、塩化物イオン量で0.30kg/m3以下と規定されている。

なお、塩化物イオン品が 0.30kg/m3を超えることがやむを得ないと判断した場合は、設計担当者と打合せのうえ、受注者等に次の基準に従った処置の方法を提案させ、「標仕」1.1.8による協識に基づいて処置する必要がある。

① コンクリート中に含まれる塩化物含有量の基準
鉄筋コンクリート造等建築物の構造耐力上主要な部分に用いられるコンクリートに含まれる塩化物量(塩化物イオン(Cl)換算)は、原則として0.30 kg/m3以下とし、やむを得ず塩化物量が0.30kg/m3を超え0.60kg/m3以下のコンクリートを使用する場合は、次のa)からd)までの条件を満たすものとする。

a) 水セメント比は、55%以下とする。
b) AE減水剤又は高性能AE減水剤を使用し、スランプは18cm以下(流動化コンクリートではベースコンクリートのスランプは15cm以下、流動化後のコンクリートのスランプは21cm以下)とする。
c) 適切な防錆剤を使用する。
d) スラブの下端の鉄筋のかぶり原さを3cm以上とする。

② 離島等で海砂以外の骨材の入手及び除塩用水の確保が著しく困難であり、塩化物量が0.60kg/m3を超える場合においては、有効な防錆処理が施された鉄筋の使用等による防錆対策を講ずる。ここでいう「有効な防錆処理が施された鉄筋」とは、「2020年版建築物の構造関係技術基準解説書」の付録 1-7に示されるエポキシ樹脂塗装鉄筋などをいう。

なお、防錆処理を施した鉄筋の付着性能は、非処理のものと異なること、また処理方法や処理剤の種類によっても異なるため、設計担当者と防錆対策の内容について協議しておく必要がある。

③ 塩化物量の測定は、「標仕」表6.9.1による。

なお、普通エコセメントを使用するコンクリートに含まれる塩化物イオン量の測定は、従来の方法と相違する部分があるので、6.9.2(2)(オ) 項を良く理解して行う必要がある。

(h) アルカリ骨材反応
① アルカリ骨材反応とは、反応性シリカを含む骨材とセメント等に含まれる Na+、K+のアルカリ金量イオンが、水の存在下で反応してアルカリけい酸塩を生成し、これが膨張してコンクリートにひび割れ、ポップアウト等を生じさせる現象をいう。

② アルカリ骨材反応は、この反応にかかわる鉱物の種類によって、アルカリシリカ反応とアルカリ炭酸塩反応とがあり、わが国で問題となっているのは主としてアルカリシリカ反応である。

③ この反応性をもつ鉱物としてはオパール、クリストバライト、トリジマイト、火山ガラス、玉髄、石英等があり、反応性シリカ鉱物を含む岩石としては輝石安山岩、チャート等がある。

④ アルカリ骨材反応は、一般に反応性骨材、高いアルカリ量、十分な湿度の3条件がそろった場合にコンクリートに被害を生じさせるとされている。

⑤ アルカリ骨材反応の抑制対策として、次のような方法が考えられる。

a) 反応性の骨材を使用しない。
b) コンクリート中のアルカリ総量を低減する。
c) アルカリ骨材反応に対して抑制効果のある混合セメントを使用する。

⑥ 以上のことから、「標仕」ではコンクリートは、アルカリ骨材反応を生じるおそれのないものとしている。

(ウ) 計画調合の決定

(a) 「標仕」では計画調合は、試し練りによってそのコンクリートの性能及び品質を確認して定めるとしているが、 I類コンクリートを使用する場合は、試し練りは省略してもよいとしている。ただし、普通エコセメント及び再生骨材H を使用するコンクリートについては、建築物への使用実績がまだ少なく、かつ、他の普通セメントと比較してフレッシュ時及び硬化後の性能、品質が我なる部分がある。よって、これらのコンクリートについては、 I類のコンクリートであっても原則試し練りを行って計画調合を決定することが必要である。

(b) 試し練りにおいて、計画スランプ、計画空気量、調合強度、その他コンクリートの温度や塩化物量、単位容積質量等を確認する。

試し練りの計画スランプ、計画空気量については、レディーミクストコンクリートの練混ぜから荷卸し地点までのロスを考慮した目標値であることに注意する。
また、運搬によるスランプロスや空気量ロスは、練混ぜから荷卸し地点までの距離、コンクリートのスランプ、外気温、調合条件等によって相違があるので、レディーミクストコンクリート工場の社内規格を参考にするとよい。

調合強度の確認は標準養生した材齢28日の圧縮強度によるが、受注者等から他の方法が提案された場合は、その内容を確認し採否を決める。

調合強度は、「JASS 5」の解説において、コンクリートの調合を定める場合に目標とする平均の圧縮強度のことであり、調合管理強度に強度のばらつきを考慮して割り増した強度と示されている。したがって試し練りによる調合強度の確認は、調合管理強度を基準として行うものであることに注意する。

現在では、コンクリートの製造が主としてレディーミクストコンクリート工場で行われるため、調合強度はレディーミクストコンクリート工場が定めることになる。そのため、レディーミクストコンクリートを使用する場合には、調合強度がレディーミクストコンクリート工場の十分な製造実績に基づき、調合管理強度を満足するように定められたものであることを、配合計画書、配合計算書、使用するコンクリートの品質管理記録などで確認する。

(c) 計画調合の表し方
コンクリートの計画調合は、JIS A 5308の表10[レディーミクストコンクリート配合計画書]により表す。

(d) レディーミクストコンクリート工場ではI類コンクリートについては、使用する材料で調合設計を標準化している。レディーミクストコンクリート工場における計画調合の定め方の一例を図6.3.9に示す。


(注) 水セメント比最大値、単位水量最大値、単位セメント最小値で修正を受けた計画調合は、セメント水比と強度との関係より、再度、調合強度を求め、それを満足する強度値の呼び強度を発注する。
図6.3.9 レディーミクストコンクリート工場における計画調合の求め方の例

2節 コンクリートの種類及び品質(R4版)

第6章 コンクリート工事


2節 コンクリートの種類及び品質

6.2.1 コンクリートの種類

(1) 平成22年版「標仕」までは、使用骨材によってコンクリートの種類分けを行っていたが、近年、スラグ骨材等を含め密度の異なる各種の骨材が開発・使用され、特に細骨材は混合して使用される場合もあることから、平成25年版「標仕」から、気乾単位容積質量でコンクリートの種類を分類し、概ね気乾単位容積質量が 2.1~2.5t/m3の普通コンクリートと、より気乾単位容積質量の小さい軽量コンクリートの2種類とされた。

(2) 寒中コンクリート、暑中コンクリート、マスコンクリート、無筋コンクリート及び流動化コンクリートは、使用材料、施工時期・施工方法・施工場所等の施工条件、要求性能等によって10節までとは異なる品質管理が必要なため、「特別仕様のコンクリート」として11節から15節に別記されている。

(3) 平成16年6月に工業標準化法が改正され、平成17年10月1日からJISマーク表示制度は、国による認定制度から登録認証機関による製品認証制度となった。これによって、JIS A 5308(レディーミクストコンクリート)もこれまでの「工場認定」から「製品認証」へと変更された。

「標仕」でも平成22年版の改定以降、 I類コンクリートは、JIS Q 1001(適合性評価-日本産業規格への適合性の認証-一般認証指針)及びJIS Q 1011(適合性評価-日本産業規格への適合性の認証-分野別認証指針(レディーミクストコンクリート))に基づき、JIS A 5308への適合を認証されたコンクリート、II類コンクリートは、 I類以外のJIS A 5308に適合したコンクリートとされている。

「標仕」では、従来建築工事には特別な場合を除き、JIS A 5308に適合するレディーミクストコンクリートで対応できると考えられている。そのうえで、適合を認証されたI類コンクリートを使用することを原則としているが、山間部、離島等で運搬可能時間の距離内にJISマーク表示認証を取得した製品(以下、この章では「JISマーク表示認証製品」という。)を製造する工場(以下、この章では「JISマーク表示認証工場」という。)がない場合でも、II類コンクリートであれば、基礎や主要構造部等の建築基準法第37条に規定される部分に適用できると考えてよい。

なお、建築基準法第37条の指定建築材料が適合すべき規格及び品質に関する技術的基準を定めた平成12年建設省告示第1446号の一部が平成28年6月13日に改正(国土交通省告示第750号)され、建築物の基礎や主要構造部等に使用するコンクリートが適合すべき日本工業規格は、JIS A 5308-2014に改められ、従来、国土交通大臣の認定が必要であった回収骨材を使用したコンクリートについても、平成31年版「標仕」からは、特記をせずに使用できることとなった。

その後、JIS A 5308-2014が、2019年3月に改正されたことにより、平成12年建設省告示第1446号の一部が令和元年5月16日に改正(国土交通省告示第18号)され、建築物の基礎や主要構造部等に使用するコンクリートが適合すべき日本工業規格は、JIS A 5308-2019に改められた。それに伴い、国土交通省住宅局建築指導課長より発出された、国住指第10号令和元年5月16日「建築物の基礎、主要構造部等に使用する建築材料並びにこれらの建築材料が適合すべき日本工業規格又は日本農林規格及び品質に関する技術的基準を定める件の改正について(技術的助言)」の抜粋を下記に示す。

建築物の基礎、主要構造部等に使用する建築材料並びにこれらの建築材料が適合すべき日本工業規格又は日本農林規格及び品質に関する技術的基準を定める件の改正について(技術的助言)

(国住指第10号 令和元年5月16日)

中略

建築基準法第37条において、建築物の基礎や主要構造部等に使用する建築材料として国土交通大臣が定めるもの(以下「指定建築材料」という。)については、その品質が日本工業規格若しくは日本農林規格に適合するもの又は国土交遥大臣の認定を受けたものにしなければならないこととされているところ、今般、告示第1446号において、指定建築材料であるコンクリートが適合すべき日本工業規格として、JIS A 5308(レディーミクストコンクリート)- 2014に代わり、新たにJIS A 5308-2019を位置付けることとした。

JIS A 5308-2014の内容は、軽量コンクリート及び高強度コンクリートであってはスランプが10cmのもの以外は JIS A 5308-2019に包含されるため、JIS A 5308-2014の仕様に適合するコンクリート(軽量コンクリート及び高強度コンクリートであってスランプが 10cmのものを除く。)については、本改正後においても、引き続き法第37条第1号に適合するものとして取り扱って差し支えない。

2019年版のJIS A 5308のレディーミクストコンクリートの種類を表6.2.1に示す。
なお、2019年版のJIS A 5308においては、普通コンクリートの区分におけるスランプフローで管理するコンクリートの追加及び高強度コンクリートの区分におけるスランプフローの範囲の拡大がなされたが、「標仕」では、スランプで管理する普通コンクリートを標準としている。

表6.2.1 JISA5308:2Ql9(抜粋)によるレディーミクストコンクリートの種類及び区分

(4)「標仕」では、建築基準法第37条第二号による国土交通大臣認定のコンクリートは、設計担当者の特記としているので、特記された場合には、認定条件等を十分に確認して使用することになる。

なお、ここでいう「認定条件等」とは、建設省告示第1446号の第3に規定される法第37条第二号の品質に関する技術的基準のことをいう。

6.2.2 コンクリートの強度

(1)「標仕」では、コンクリートの設計基準強度は、36N/mm2以下(軽量コンクリートでは27N/mm2以下)としている。

なお、従来、軽量コンクリートの設計基準強度は27N/mm2未満であったが、「JASS 5 鉄筋コンクリート工事」の軽量コンクリート2種の規定に合わせ、平成25年版「標仕」から27N/mm2以下に変更された。

高強度化が流れではあるが、4~5階建て、数千m2程度のRC造建築物では高強度コンクリートを使用することはほとんどない。

(2) 構造体に打ち込まれるコンクリートの強度とは、構造体に打ち込まれるコンクリートが本来保有していると考えられるポテンシャルの圧縮強度のことであり、荷卸し地点でコンクリート試料を採取し、標準養生した供試体の材齢28日の圧縮強度で表される。ポテンシャルの圧縮強度は、設計基準強度に構造体コンクリートの強度と標準養生した供試体強度との差を考慮した値(構造体強度補正値(S):6.3.2(ア)(b)参照)を加えた調合管理強度以上でなければならない。

(3) 構造体コンクリートとは、構造体とするために型枠内に打ち込まれて養生され、硬化して構造体あるいは部材を形成しているコンクリートのことである。構造体コンクリートの強度は、初期に十分な湿潤養生が施されれば、材齢28日以降も長期にわたって強度が増進し、材齢91日においても強度増進は続き、停止することはない。しかし、コンクリート工事においては適切な材齢を定め、その材齢において設計基準強度を満足するように定める必要がある。建築基準法施行令第74条第1項第二号に基づき、昭和56年6月15日建設省告示第1102号(最終改正平成28 年3月17日「設計基準強度との関係において安全上必要なコンクリート強度の基準」)(以下、告示「コンクリート強度に関する基準」という)第1第二号ではコンクリートの強度を、コンクリートから切り取ったコア供試体について強度試験を行った場合に、材齢28日において設計基準強度の数値に7/10を乗じた数値以上、かつ、材齢91日において設計基準強度の数値以上であることを定めている。

一方、実際のコンクリート工事において構造体コンクリートの強度をコア供試体で試験することは、構造体に損傷を与え、かつ、修復が必要となるため困難である。このため、一般的には工事現場で構造体に打ち込まれるコンクリートから試料を採取し、構造体コンクリートと同じような強度発現をすると考えられる方法で養生した供試体の圧縮強度から構造体コンクリートの強度を推定し、品質管理を行っている。上記告示第1第一号では、現場水中養生を行った供試体について強度試験を行った場合に、材齢28日において設計基準強度の数値以上であることを定めている。

「標仕」では同告示の規定に基づき、原則として、現場水中養生による材齢28日における管理とし、これを滴足しないと想定される場合に、現場封かん養生による材齢28日を超え91日以内の管理を行うとしている。これは、施工現場における構造体コンクリート強度の判定材齢は一般的に28日とされていることに配駆したものである。

さらに、平成28年3月の同告示改正により第1第三号に標準養生(水中又は飽和水蒸気圧中で行う場合に限る。)が追加されたことから、平成28年版「標仕」においても標準養生による材齢28日における判定が追加された。

なお、構造体コンクリート強度を推定するための適切な材齢及び判定基準は養生方法ごとに異なるため、標準養生を含め「標仕」6.9.5で規定されている。

(4) 使用するコンクリートの強度及び構造体コンクリート強度の判定は、9節の6.9.4及び6.9.5によって行う。(2)でも記したように、構造体に打ち込まれるコンクリートとは、工事に用いるために工事現場に搬入したコンクリートのことであり、その強度は、コンクリートが本来保有していると考えられるボテンシャルの圧縮強度のことである。したがって、構造体に打ち込まれるコンクリートの強度は、荷卸し地点で採取して標準養生した供試体の材齢28日の圧縮強度で表し、その値は調合管理強度以上でなければならず、かつ、JIS A 5308(レディーミクストコンクリート)の呼び強度の強度値を満足しなければならない。

6.2.3 気乾単位容積質量

(1) コンクリートの気乾単位容積質量は、使用する骨材の密度や調合によって異なり、構造計算で固定荷重を算定するときに、鉄筋コンクリートの質量を求めるために用いる値である。平成25年版「標仕」から、従来の使用骨材の種類による区分から、新たにコンクリートの気乾単位容積質量による区分に変更され、そのための標準的な判断基準として、「JASS 5」の規定値を参考に数値が示された。

(2) 軽量コンクリートの気乾単位容積質祇は、別途「標仕」10節で1種、2種の種類ごとに標準的な値の範囲が示されている。

6.2.4 ワーカビリティー及びスランプ

ワーカビリティーとスランプの関連等について次に示す。

(ア) ワーカビリティーは、打込み場所並びに打込み方法及び締固め方法に応じて、型枠内並びに鉄筋及び鉄骨周囲に密実に打ち込むことができ、かつ、机骨材の分離が少ないものとする。また、スランプの所要値は、特記がなければ、基礎、基礎梁、土間スラブでは15cm又は18cm、柱・梁・スラブ・壁では18cmとする。

(イ) ワーカビリティーは、運搬、打込み、締固め及び仕上げのフレッシュコンクリートの移動・変形を伴う作業の容易さと、それらの作業によってもコンクリートの均一性が失われないような総合的な性質であり、フレッシュコンクリートの流動性の程度を表すスランプとは別の概念である。

(ウ) 作業の容易さからいえば、スランプが大きく流動性が高いほうがワーカビリティーが良いといえるが、スランプが過大になると粗骨材が分離しやすくなるとともにブリーディング量が大きくなり、コンクリートの均一性が失われる。そこで、単位セメント量や細骨材率を大きくするとフレッシュコンクリートの粘性が大きくなり、粗骨材の分離は生じにくくなる。

(エ) スランプを大きくし、かつ、単位セメント量や細骨材率を大きくすれば、見かけ上はワーカビリティーの良いコンクリートが得られる。しかし、単位水量や単位セメント量が過大になると乾燥収縮率が大きくなってひび割れが生じやすくなるとともにセメントペーストやモルタル分の多いコンクリートとなって、打上りコンクリートの表面の品質が悪くなる。

(オ) このため、作業の容易さだけでワーカビリティーを評価するのではなく、ブリーディングや骨材の分離ができるだけ少なくなるようにするという条件も考慮しなければならない。

(カ) スランプは、打込み時のフレッシュコンクリートに要求される重要な品質項目の一つであるが、ここでいうスランプとは、荷卸し地点でのスランプである。スランプ18cmというのは、許容差を含めて考えればよく、その値は JIS A 5308(レディーミクストコンクリート)の規定によれば±2.5cmである。

6.2.5 構造体コンクリートの仕上り

(1) コンクリート部材の位置及び断面寸法の許容差
(ア) コンクリート部材の位置及び断面寸法は、所定の許容差の範囲内になければならないが、これは次の理由による。

(a) 構造体としての耐力及び耐久性の確保
(b) 仕上げ二次部材又は設備等の納まり上の要求
(c) 美観上の要求

(イ) 部材の位置及び断面寸法の測定は、一般的には次のように行う。
特記された部材又はサンプリングした部材について、基準量からスケール等を用いて測定する。測定部分は両端及び中央の3箇所程度行う。

柱・梁等は直接測定できることが多く問題は少ないが、床・壁等の断面寸法は、両側から測定して計算で求めると測定誤差が大きくなることがある。そこで、開口部等を利用して直接測定する。

むやみに測定項目や測定数を増やすことは、測定費用や時間を要し、本来の目的から逸脱することになる。コンクリート部材の位置及び断面寸法は、型枠の変形等がなければ、型枠により決まるものであり、補修も困難であることから、コンクリート打込み前の型枠の設計・掛出し・組立等を確実に行うことが必要である。コンクリート打込み後は型枠の変形が生じたと見られる部分等について、確認のために測定する。

(ウ) (ア)及び(イ)に基づいて各部材の位置及び断面寸法を測定し、その結果、位置及び断面寸法の精度が「標仕」表6.2.3の許容値を満足しない場合は、「標仕」6.9.6に従って必要な措置を定め、監督職員の承諾を受けるとともに、適切な処置等を講じなければならない。

(2) コンクリート表面の仕上り状態
(ア) せき板に接するコンクリートの仕上り状態は特記によるが、コンクリートの打放し仕上げの場合は、「標仕」表6.2.4の種別に応じた「表面の仕上り程度」を目安とする。コンクリートの仕上り状態を良好にするには、不陸を少なくするために変形量の少ない型枠設計を行い、コンクリート打込みの際は、目違い等が生じないようにコンクリートの締固めを行うことが重要である。

(イ) コンクリートの仕上りの平たんさは、せき板に接する面は型枠の変形等により、せき板に接しない床上面等は左官の均し精度により決まる。

平たんさの測定方法には、「JASS 5」で定められたJASS 5 T-604(コンクリートの仕上がりの平たんさの試験方法)があるが、試験用器具が特殊で、取扱い方法も難しいため、一般的には下げ振り、トランシット、レベル、水糸、スケール等を使用して、コンクリート面の最大、最小を測定する方法等で行われている。
「標仕」表6.2.5の平たんさの種別は、仕上げの種類だけでなく、建物の規模や仕上り面に要求される見ばえ等によっても異なるので、適切な値を品質計画で提案させ、検討するとよい。

なお、平成31年版「標仕」では、平成28年版「標仕」の表6.2.5において示されていた「適用部位による仕上げの目安」、すなわち、具体的な「仕上げの種類」を削除し、「コンクリートの内外装仕上げ」と所定の「平たんさ」のみを示し、適用部位は特記することとした。

参考までに、平成28年版「標仕」の「表6.2.5 コンクリートの仕上りの平たんさの標準値」を下記に示す。

なお、セメントモルタルによる陶磁器質タイル張りについては、「標仕」15.3.5 (4)(イ)(a)?において、「外装タイルセメントモルタル張りの場合、コンクリートの表面の仕上がり状態は、表6.2.5[コンクリートの仕上りの平たんさの種別]のb種」と規定されている。

平成28年版「標仕」表6.2.5 コンクリートの平たんさの標準値(一部修正)

第6章 コンクリート工事 1節 共通事項(R4版)

第6章 コンクリート工事


1節 共通事項

6.1.1 一般事項
(1) この章は、工事現場施工のコンクリート工事に適用する。また、1章[各章共通事項]と併せて適用する。ただし、コンクリートを使用するものでも、PCカーテンウォールは17章、手すり、段板、ルーバー等の簡易なプレキャストコンクリート製品は20章による。

また、平成25年版「標仕」から、コンクリート工事の品質管理の向上等を目的に、主に次の変更が行われた。

(ア) 設計基準強度をコンクリートの要求品質の一つに位置付け、これを満足するための管理項目として、構造体に打ち込まれるコンクリートの強度と構造体コンクリートの強度を明示した。

(イ) 材料及び調合の条件を、コンクリートの品質項目や製造から外し、「コンクリートの材料及び調合」として独立させ、調合管理強度を満たすための条件として設計基準強度や構造体強度補正値との関係を含め、セメントや骨材等のコンクリート用材料ごとの事項を一つにまとめた。

(ウ) 普通コンクリートの一部として扱っていた「暑中におけるコンクリートの取扱い」は、新たに「暑中コンクリート」として節立てし、平成25年版から普通コンクリートの一般規定から独立させた。また、設計基準強度27N/mm2以上、かつ、 36N/mm2以下のコンクリートは、普通コンクリートの一般規定とは別に扱っていたが、普通コンクリートと同じ扱いとし、平成25年版から「高い強度のコンクリートの取扱い」を削除した。

(エ) 構造体コンクリートの仕上り状態及びかぶり厚さの確認並びにそれらの事項が所要の品質を満足しない場合の補修及びその後の検査を明記した。

(2) 作業の流れを図6.1.1に示す。

図6.1.1 コンクリート工事の作業の流れ(普通コンクリート)

(3) 施工計画書の記載事項は、概ね次のとおりである。なお、赤文字を考慮しながら品質計画を検討する。

(ア) コンクリート工事の施工計画書
工程表(配合計画書の提出、試し練り、型枠組立、コンクリート打込み、支柱取外し等の時期)
配合計画書、計画調合の計算書
(軽量コンクリートの気乾単位容積質量(「標仕」6.10.2(1))を含む)

コンクリートの仕上りに関する管理基準値、管理方法等
④ 仮設計画(排水、コンクリートの搬入路等)
打込み量、打込み区画、打込み順序及び打止め方法
⑥ 打込み作業員の配置、作業動線
⑦ コンクリートポンプ車の圧送能力、運搬可能距離の検討
⑧ コンクリートポンプ車の設置場所、輸送管の配置及び支持方法
⑨ コンクリート運搬車の配車
圧送が中断したときの処置
圧送後、著しい異状を生じたコンクリートの処置
打継ぎ面の処置方法
⑬ 上面の仕上げの方法(タンピング)
打込み後の養生(暑中、寒中)
コンクリートの補修方法
供試体の採取(採取場所、養生方法)
⑰ 試験所

(イ) 型枠工事の施工計画書
① 型枠の準備量
型枠の材料
型枠緊張材の種別及び緊張材にコーンを使用する箇所
④ コンクリート寸法図
(スケルトン、コンクリート躯体図、コンクリートプラン)
⑤ 基準部分の型枠組立図
型枠材取外しの条件(材齢又は構造計算により安全を確認する場合)
⑦ はく離剤使用の有無

6.1.2 基本要求品質

(1) コンクリートの「材料」に関しては、JIS A 5308(レディーミクストコンクリート)に適合した材料が使用されており、JIS Q 1011(適合性評価-日本産業規格への適合性の認証-分野別認証指針(レディーミクストコンクリート))では、製造工場から提出される材料試験の結果によりその品質を確認することにしている。

(2) コンクリート部材の断面形状、寸法及び位置は、設計図書に建築物として必要な性能を有するように設計された値が指定されており、「標仕」6.2.5(1)による許容差の範囲に収まるように施工する必要がある。「標仕」表6.2.3では一般的な許容差の標準値を示しているが、この数値は本来建築物の機能、部位、仕上げの程度等によって変動するものであり、共通的に定まるものではない。例えば、石工事(「標仕」10.1.3(3)参照)や左官工事(「標仕」15.3.3(3)参照)等のようなコンクリート工事のあと工程となる仕上材料に要求される精度により、「標仕」表6.2.3をそのまま使えない場合もある。このため、工事ごとにこの許容差を定めるに当たっては、寸法誤差が生じた場合の影響度等も考慮して、「品質計画」において、適切な値を定める必要がある。

コンクリートは、全断面において均質なものとして設計されており、打ち上がったコンクリートはこれを満足させる必要がある。しかし、打ち上がったコンクリートの内部を確認することは非常に困難であり、表面の状態を確認することによって、内部の状態を推定することになる。一般的にコンクリート部材の内部と比べて表面付近は鉄筋や型枠等の影響で欠陥が生じやすくなる。このため、「標仕」6.1.2(2)では、「密実な表面状態」を要求事項とし、コンクリート内部の品質を含めて表面状態で確認することにしている。コンクリート表面に豆板等の欠陥がある場合には、コンクリートの耐久性や強度に影響を及ぼすため、「標仕」では、せき板取外し後にコンクリート表面を確認することにしている。「品質計画」においては、第一に密実なコンクリートを打ち込むための具体的な方法の提案をさせるとともに、もし、豆板等が発生した場合、その程度に応じた補修方法等を定めるようにする。この場合の補修方法については 6.9.6(2)を参考にするとよい。

(3) 建築物の構成部材としてのコンクリートの強度は、実際に出来上がった構造体コンクリートからコアを採取して試験によってその確認ができる。しかし、この方法は建築物を傷つけることになるため、新築建築物にあっては適切ではない。このため「標仕」6.2.2では、工事現場において構造体に打ち込まれるコンクリートと同ーのコンクリートを採取して、工事現場内で建築物と同様な温度条件となるように養生した供試体又は標準養生した供試体により、構造体コンクリートの強度を推定している。実際のコンクリートの強度は、柱、梁、壁、スラブ等の各部位によって強度の発現にばらつきがあることが分かっており、構造物のどの部位においても設計基準強度を満足させるため、調合設計において所定の補正を行うことにしている。「所定の強度を有する」とは、こういったことを勘案して、実際の構造体コンクリートの強度が設計基準強度を満足するように適切な養生を行い、供試体の強度から構造体コンクリートの強度を確認すればよい。

「構造耐力、耐久性、耐火性」等は、コンクリートに要求される重要な性能である。これらについては、一般に本章で説明する事項を実現することで必要な性能を得ることができるようになっているが、(2)で説明したように寸法の誤差や、部分的な欠陥の発生を完全になくすことは現実的ではない。このため、所要の「構造耐力、耐久性、耐火性」を満足させるための、寸法許容差や、欠陥が生じた場合の程度の判断基準及び補修方法をあらかじめ定めておくようにする。

4章 地業工事 2節 試験及び報告書

第4章 地業工事 


2節 試験及び報告書

4.2.1 一般事項

(a) 「標仕」4章2節では、試験杭、杭の載荷試験、地盤の載荷試験及び報告書について規定している。

(b) 試験は.原則として.監督職員の立会いを受けて行うこととしている。
なお、載荷試験には、(c)のような理由で設計担当者の立会いを求めるのがよい。

(c) 「標仕」4.2.1(c)では施工試験の結果によって「その後の施工の指示を受ける。」こととしている。「施工の指示」には、増し杭等設計変更の必要な場合もあるが、この場合は、工程管理上速やかに行う必要がある。

(d) 杭の施工に併せて行う管理試験については、3節から5節に示す。

4.2.2 試験杭

試験杭とは、本杭を施工する場合の各種管理基準値等を定めるための杭を想定している。打込み工法(「標仕」4.3.3(e))の試験杭は、杭の長さの決定や支持層の確認等のため本杭と別に計画する。試験杭の位置、本数及び寸法は、設計図書に特記される。試験後の杭体の強度に十分余裕があると予想される場合には、試験杭を本杭とすることができる。

セメントミルク工法(「標仕」4.3.4(e))、特定埋込杭工法(同4.3.5 (b))、鋼杭工法(同4.4.3及び4.4.4)及び場所打ち杭(同4.5.4(b))については、一般的には最初の1本目の本杭が試験杭とされる。試験杭の位置は、地盤や土質試験の結果から、全基礎杭を代表すると判断される位置に指定される。

試験杭の施工結果を基に、試験杭以外の本杭の施工における各種管理基準値等を定める。このため、試験杭の施工設備は、原則として、本杭に用いるものを使用する。

なお、杭の支持力の確認試験や水平載荷試験を行うための試験杭や反力杭等の特別な仕様が必要な「試験杭」は「標仕」4.2.2(a)の「特記」の想定外である。その場合は、設計担当者により別途仕様が定められ設計図書に特記される。

4.2.3 杭の載荷試験

杭の載荷試験は、「標仕」では、鉛直又は水平載荷試験としている。また、試験の方法は特記によるとしている。

地盤工学会基準「杭の鉛直載荷試験方法・同解説」には、単杭に対して鉛直方向に載荷するすべての載荷試験を対象にし、
「杭の押込み試験方法(JGS 1811)」
「杭の先端載荷試験方法(JGS 1812)」
「杭の引抜き試験方法(JGS 1813)」
「杭の鉛直交番載荷試験方法(JGS 1814)」
「杭の急速載荷試験方法(JGS 1815)」
「杭の衝撃載荷試験方法(JGS 1816)」
の6種類の基準が併記されている。

また、水平載荷試験に関しては地盤工学会基準「杭の水平載荷試験方法(JGS1831)」に基準化されている。

ここでは、地盤工学会基準の概要を紹介する。

(1) 鉛直載荷試験
6種類の基準を、載荷方法から、荷重の性質、加力方法、反力装置、載荷位置及び載荷方向で分類すると表4.2.1のとおりである。

表4.2.1 載荷方法による分類(杭の鉛直載荷試験方法・同解説より)

荷重の性質からは、静的載荷試験と動的載荷試験に大別される。静的載荷と動的載荷は、杭体並びに地盤の速度及び加速度に依存する抵抗が無視できる載荷か否かで区別できる。また、動的載荷において急速載荷と衝撃載荷は、杭体の波動を無視できるか否かで区別される。

この基準では、図4.2.1に示すように、載荷時間の長さ、具体的には載荷時間 t1の、縦波が杭体を一往復するのに要する時間 2L/cに対する比である相対載荷時間 Trの大きさで区分される。


図4.2.1 載荷時間の比較(杭の鉛直載荷試験方法・同解説より)

① 押込み試験方法
押込み試験方法は、杭頭部に軸方向押込み荷重を加える試験である。この試験方法は、実際の杭と同じ荷重条件で行うため鉛直支持力特性の評価の信頼性が高いが、反力装置に載荷梁等を使用した反力抵抗体が必要なため、ある程度の費用と工期を要する。

載荷に用いる試験装置は、加力装置、反力装置及び計測装置で構成される。図 4.2.2に一般的な載荷試験装置例として反力杭方式の試験装置を示す。


図4.2.2 反力杭を使用した場合の押込み試験装置例
(杭の鉛直載荷試験方法・同解説より)

② 先端載荷試験方法
先端載荷試験方法は、図4.2.3のように、杭体の先端付近に取り付けたジャッキによって静的な荷重を加える試験である。この試験方法では、押込み試験方法のような杭頭部の反力装置は用いずに. ジャッキの上下に生ずる抵抗力を互いに反力として載荷する。ジャッキの上方に生ずる抵抗力は.杭を押し上げるのに必要な抵抗(押上げ抵抗)であり、杭の周面抵抗力に杭の自重が加わったものとなる。ジャッキの下方に生じる抵抗力は、杭の先端抵抗力が主であり、これにジャッキより下方の部分の周面抵抗力が加わることになる。


図4.2.3 先端載荷試験の装置(杭の鉛直載荷試験方法・同解説より)

③ 引抜き試験方法
引抜き試験方法は、杭頭に静的な引抜き荷重を加える試験である。

試験装置は、押込み試験と同様に、加力装置、反力装置、計測装置で構成される。引抜き試験の反力抵抗体は、反力杭が一般的であるが反力板も用いられている。コンクリート系の試験杭では、試験杭の杭体に引張り応力が作用するため、杭体の引張り強度について注意を要する。

また、各層の周面抵抗力特性を得るために杭体の軸方向力を測定する際には、杭体のひび割れの影響についても留意しなければならない。

④ 鉛直交番載荷試験方法
鉛直交番載荷試験方法は、杭に押込み及び引抜きの軸方向鉛直交番荷重を加える試験である。地震時における構造物のロッキング動等によって杭基礎に作用する変動軸力は、鉛直交番荷重として杭頭に作用するが、従来の設計では押込み荷重及び引抜き荷重に対する抵抗力を押込み試験及び引抜き試験によってそれぞれ別々に評価してきた。しかし、近年行われるようになってきた上部構造と杭基礎との一体解析では、鉛直交番荷重に対する杭の挙動を一連の挙動として評価する必要が生じてきた。鉛直交番載荷試験は、これまで研究的に行われてきた事例はあるものの、多くの試験が実施されてきたとはいえない。しかし、兵庫県南部地震以降、常時から大地震時に至るまでの杭基礎の挙動を正確に設計に反映させる必要性が高まっており、鉛直交番載荷試験によって杭挙動を評価する機会が今後増加するものと考えられる。したがって、鉛直載荷試験方法の一つとして「杭の鉛直交番載荷試験方法(JGS 1814)」が制定され、試験の基準化を図ることとされている(図4.2.4参照)。


図4.2.4 鉛直交番載荷試験の載荷サイクル(杭の鉛直載荷試験方法・同解説より)

⑤ 急速載荷試験方法
急速載荷試験方法は、杭頭に動的な荷重を加える載荷試験の一つである。荷重の性質として油圧ジャッキ等により静的な荷重を加える押込み試験とハンマー等で衝撃荷重を加える衝撃載荷試験の中間的な位置付けにあり、基準の中では急速載荷を「杭体の波動現象は無視できるが、速度および加速度に依存する杭体と地盤の抵抗は無視することができない載荷時間を持つ載荷」と定義している。具体的には、相対載荷時間 Tr が 5 ≦ Tr < 500の範囲の載荷試験である(図4.2.5参照)。


図4.2.5 反力装置を使用しない加力装置(杭の鉛直載荷試験方法・同解説より)

⑥ 衝撃載荷試験方法
杭の衝撃載荷試験方法は、杭頭に動的な荷重を加える載荷試験の一つである。一般に、杭頭部にひずみ計及び加速度計を取り付け、ハンマー等による杭打撃時に発生するひずみ波形及び加速度波形を測定し、波動理論に基づいて解析を行い、杭の鉛直支持力特性を評価する試験方法である(図4.2.6参照)。

載荷試験においては、載荷時間が、波動が杭長分を伝播する時間に対して短くなるほど、波動の影響が大きくなる。衝撃載荷試験は、載荷時間が 0.01〜0.02秒程度であるため、波動現象を伴う試験であり、試験結果の解析は一次元波動理論に基づく必要がある。


図4.2.6 衝撃載荷試験方法の例(杭の鉛直載荷試験方法・同解説より)

(2) 水平載荷試験
杭の水平載荷試験方法は、静的載荷による杭の水平抵抗特性に関する資料を得ること、また、既に定められた杭の水平地盤反力係数等の設計値の妥当性を確認することを目的とする(図4.2.7参照)。

載荷方法は、載荷パターン及び載荷方式により分類され、対象とする構造物の種類及び試験の目的を考慮して決定する。

載荷パターンには、一方向載荷と正負交番載荷があり、いずれかを選択する。また、単サイクルと多サイクルがあり、いずれかを選択する。後者の場合は、試験の目的に応じてサイクル数を決定する。

載荷方式には、段階載荷方式と連続載荷方式があり、いずれかの方式を選択する。前者の場合は荷重(変位)段階数、各荷一重(変位)段階における荷重(変位)保持時間を、後者の場合は載荷速度を試験の目的に応じて決定する。


図4.2.7 水平載荷試験の装置例(杭の水平載荷試験方法・同解説より)

4.2.4 地盤の載荷試験
(a) 一般事項
地盤の載荷試験は、「標仕」では平板載荷試験としている。地盤の平板載荷試験は、地盤工学会基準JGS1521-2003(地盤の平板載荷試験方法)による。

(b) 平板載荷試験
(1) 試験地盤
(i) 試験地盤は、根切りのときスコップ等で荒らしたり踏み付けたり、あるいは水で埋まらないよう試験地盤の少し上で止めておき、載荷板を設置するときに、試験が自然状態で行えるようにする。

(ii) 試験孔は、一般に載荷板の5倍程度あればよいといわれているが、地盤工学会基準JGS 1521-2003によると、試験地盤面は、載荷板の中心から1.0m以上の範囲を水平に整地すると定められている(図4.2.8参照)。


図4.2.8 平板載荷試験における根切り幅と載荷板との関係を示した例

(2) 載荷板
(i) 載荷板は、直径30cm以上の円形とし、厚さ25mm以上の鋼板又は同等以上の剛性のある板を用いる。

(ii) 設置は、試験孔のほぼ中央とし、反力装置の中心の鉛直下を水平器等を用い平らに仕上げ設置する。また、地盤となじみの悪いときは薄く砂をまくか、せっこうをまいて行う。

なお、試験地盤が常水面以下の場合は、試験地盤以下に水位を下げないように注意し排水する。また、水が多く排水により地盤が緩むおそれのある場合は、設計担当者と打ち合わせる。

(3) 養 生
試験装置の上は、テント等で覆い直射日光及び降雨を避ける。また、雨水が試験孔に流入しないようにする。

(4) 最大荷重
最大荷重は設計図書の指定によるが、推定した地盤の極限支持力以上、又は設計荷重に安全率を乗じた値以上とする。

(5) 試験装置
(i) 載荷台の反力梁は、中心を載荷板の中心と一致させ、水平に設置して、変形、傾斜、転倒がないようにする。また、載荷物は偏心しないよう注意する(図4.2.9 参照)。

(ii) 加圧方法は、計画最大荷重以上の加圧能力と、変形に追随できる十分なストロークをもつジャッキによる。


図4.2.9 平板載荷試験の装置の例

(6) 計測装置
(i) 載荷荷重の計測は、荷重計(環状ばね型力計又はロードセル)を用いる。計器は試験荷重に見合ったもので、検定後の経過期間が短いものがよい。

(ii) 変位の計測は、読み精度 1/100mm、ストロークは30mm以上のダイヤルゲージ又はこれに準ずる性能の変位計を用い、セットは図4.2.10のようにする。


図4.2.10 平板載荷試験における沈下量の測定方法

(7) 試験方法
(i) 国土交通省大臣官房官庁営繕部「敷地調査共通仕様瞥」4.7.4(4)では、載荷方法は、荷重制御による段階式載荷又は段階式繰返し載荷とし、適用は特記により、特記がなければ、段階式載荷とするように定められている。

(ii) 地盤工学会基準JGS 1521-2003によると、載荷重は、計画最大荷重を 5〜 8 段階ずつ等分に載荷し、荷重の保持時間は30分程度の一定とするよう定められている。

(iii) 沈下量の測定時間は地盤工学会基準 JGS 1521-2003によると、各荷重段階において所定の荷重に達したのち、原則として表4.2.2のように定められている。

表4.2.2 沈下量測定時間

(8) 試験結果の表示
試験結果の表示の例を,図4.2.11に示す。


図4.2.11 載荷試験結果の例

(9) 報告書
地盤の載荷試験の報告書は、次の事項を記載する必要がある。

① 地盤工学会基準JGS 1521-2003と部分的に異なる方法を用いた場合には、その方法
② 試験方法
③ 試験結果の図及び表
④ 地盤反力係数
⑤ 極限支持力
⑥ 試験地盤の観察結果と地下水の状況
⑦ その他特記すべき事項

4.2.5 報告書等
地業工事の報告書の目的及び記載事項は次のとおりである。

(1) 目 的
(i) 施工記録を報告することにより施工状況を記録に残す。
(ii) 予期しない状況が生じた場合等の対策を立てる場合の参考資料とする。
(iii) 上部構造に不同沈下等の問題点が生じたときの原因究明資料とする。
(iv) 将来の近隣での建設の参考資料とする。

(2) 全般的な報告書の記載事項
(i) 工事概要
(ii) 杭材料(杭の種類、材質、形状、寸法、コンクリート強度等)
(iii) 施工機械の仕様概要
(iv) 工法の概要
(v) 実施工程表
(vi) 工事写真
(ⅶ) 試験杭の施工記録及び地業工事に伴う試験結果の記録
(ⅷ) 本杭の施工記録
(ix) 試験杭等において採取した土質資料

3章 土工事 1節 一般事項 

第3章 土工事 


01節 一般事項

3.1.1 適用範囲

(a) この章は、建築物の建設工事に伴う根切りや地下掘削後の埋戻し、建物周辺の盛土等の土工事並びに山留め工事を対象とするもので、大規模な敷地造成工事等は対象としていない。

(b) 作業の流れを図3.1.1に示す。

図3.1.1 土工事の作業の流れ

(c) 施工計画書の記載事項は、おおむね次のとおりである。
なお、赤文字を考慮しながら品質計画を作成する。

① 工程表(山留め設置、根切り、埋戻し、山留め撤去等の時期)
② 山留めの工法及び安全を確認できる構造計算書(荷重、振動等に対する安全性の確認等)
③ 根切りの工法(順序、掘削機の種類と能力、予定搬出土量等)
④ 残土の処理方法(場外処理の場合は、地番、距離、処分地の種類等)
⑤ 法勾配並びに法面の養生方法及び法面の滑動のおそれがある場合の観測方法
⑥ 排水計画(排水溝の位置、釜場の位置、地下水の状況、揚水ポンプ能力と台数、台風あるいは停電時の対策、揚水停止時期の検討、流末の処置)
⑦ 埋戻し土の種類、締固め方法及び余盛り高さ
⑧ 安全管理対策(3.1.3の具体的実施方法及び関連対策等)
⑨ 公害対策(3.1.3の具体的実施方法等)
⑩ 作業のフロー、管理の項目・水準、方法、品質管理体制・管理責任者、品質記録文書の書式とその管理方法等

3.1.2 基本要求品質

(a) 一般に根切りの寸法や形状については設計図書に示されることはないが、法面の勾配等は、その掘削深さや土質等によって労働安全衛生法等によって定められている。したがって「形状及び寸法が所定のもの」としては、これらに基づき安全性を確保できるように、具体的な工法や安全対策等を提案させ、これによって施工させるようにする。

また、床付け面より下を深掘りしたり掘削機の刃先で乱したりして、地盤をかく乱すると、上部構造に沈下等の悪影響を与えるおそれがある。このため、掘削に当たっては床付け面をいかにかく乱しないような工法を採用するのか、また、もし万一床付け面を乱した場合の処置方法も含めて品質計画として提案させるようにするとよい。ここで床付け地盤が設計時に想定した条件と異なる場合は、設計担当者と打ち合わせて、処理方法を検討し、必要に応じて「標仕」1.1.8による協議を行い処理する。

(b) 埋戻しや盛土の材料は、一般に天然のものであり、「標仕」表3.2.1による種別の同じものが指定されていても、工事現場により材料の品質性状は異なったものとなる場合が多い。

一般に、土の場合は、その種類や含水状態によって、適切な締固めの方法や使用する機器等が異なる。したがって最も適切な締固めの方法及び管理の基準や方法等を品質計画で定め、それに従って管理したことが分かるようにしておく。

3.1.3 災害及び公害の防止

(a) 災害防止のために、特に注意する必要のある事項は、次のとおりである。

(1) 周囲の建物等の安全の確保
(2) 地中埋設物等に対する確認及び処置
(3) 土砂の崩壊による危険防止のための次の観測、測定等

なお、危険箇所については、常時巡視する態勢が必要である。
① 周辺地盤、法面に発生するひび割れ
② 周辺地盤の沈下、移動
③ 湧き水、漏水
④ 山留めの土圧、変形

(4) 法面保護
法面保護の方法には、通常次のようなものがある。

① メッシュ入りモルタル吹付け
② モルタル吹付け
③ 短期間及び大雨に対してはシートによる覆い
④ 吹付けは種

(b) 公害防止のために、特に注意する必要のある事項は、次のとおりである。
(1) 騒音、振動の防止
生活環境の保全と建設工事の円滑化を図るため、住居が集合している地域、病院又は学校周辺の地域等で、設計図書に、低騒音型・低振動型建設機械を使用するよう指定された場合は、「低騒音型・低振動型建設機械の指定に関する規程」(平成9年7月31日建設省告示第1536号)により指定された建設機械を使用する必要がある。

(2) 建設副産物の処理
建設副産物については.1.3.8を参考に適切に処理する。

(3) 土壌汚染対策については.1.3.11(a)による。

(4) 近隣の水位の低下並びに油滴、塵あいの飛散による汚れの防止等の調査及び防護、養生の検討

(5) 工事現場以外(運搬途中、敷地周辺)の道路、排水路の土砂、泥水による汚れ等の防止及び堆積しておく埋戻し土の雨による流出るの防止

(6) 連搬車の事故防止
(i) 土砂等を運搬する車両は、交通事故の防止対策等からダンプカー協会に加入している車両を優先的に使用する(土砂等を運搬する大型自動車による交通事故の防止等に関する特別措置法(昭和42年法律第131号))。

(ⅱ) 工事現場へ出人りする際の事故防止に努める。

2章 仮設工事 1節 共通事項

2章 仮設工事


1節 共通事項

2.1.1 一般事項

(1) 仮設については、公共工事標準請負契約約款に基づく工事請負契約書第1条第3項において、「仮設、施工方法その他工事目的物を完成するために必要な一切の手段については、この契約書及び設計図書に特別の定めがある場合を除き、受注者がその責任において定める。」と規定しており、受注者がその責任において履行することができる。

したがって、「標仕」2章では、工事の施工に当たり発注者として示すべき最低限の事項について規定している。

(2) 仮設工事計画に当たっては、仮設物によって建物の品質を損なうことなく、安全で効率的な作業を行えるよう検討する必要がある。また、現場近隣の環境保全に配慮するとともに、仮設資材の有効活用も省資源対策上必要である。

(3) (1)で述べたとおり仮設計画は監督職員の承諾事項ではないが、参考までに工事の総合仮設をまとめた施工計画書の記載事項を示すと、概ね次のようになる。

① 工事目的物の位置と敷地との関係(配置と高低)
② 仮囲いの位置、構造及び主要部材の種類
③ 材料運搬経路と主な作業動線
④ 仮設物等の配置(監督職員事務所、受注者事務所、休憩所、危険物貯蔵所、材料置場、下小屋、廃棄物分別置場等)
⑤ 排水経路、工事用電力並びに水道の引込み位置及び供給能力
⑥ 足場並びに仮設通路の位置、構造及び主要部材の種類
⑦ 揚重機(リフト、クレーン、エレベーター、ゴンドラ等)の種類及び配置
⑧ 作業構台の位置、構造及び主要部材の種類
⑨ 墜落防止及び落下物防止並びに感電防止の施設
⑩ 近隣の安全に対する処置(近隣使用道路の配置計画図等)

2.1.2 仮設材料

(1) 一般事項

仮設に使用する材料は、それぞれの用途に応じ、品質、性能等が適正でなければならない。一般に仮設材料は、工事現場において長期間にわたり、かつ、繰り返し使用されることから、品質の確認が容易で性能の低下が生じにくいものでなければならない。

また、仮設材料には、その品質又は使用方法等について労働安全衛生法、消防法、 JIS (日本産業規格)、その他団体等の定める基準による規制等を受けるものがあるので、これらについてあらかじめ検討・確認しておくことが必要である。

特に、足場を構成する仮設機材については、長期間繰り返して使用されるうちにその強度が低下し倒壊事故等重大な災害につながるところから、労働安全衛生法令及び厚生労慟大臣が定める規格に規定される要件を具備するものを使用することが必要である。また、生産、流通段階での安全性の確保を図るために、(-社)仮設工業会では仮設機材に対し、材科、構造及び強度等を規定した認定基準を定めている。

さらに、経年仮設機材(現場で一度でも使用されたことのある仮設機材)が、繰り返し使用されている間の品質、性能等確保のために、原生労働省から経年仮設機材の適正な管理のための通達「経年仮設機材の管理指針」(平成8年4月4日労働省基発第223号の2)(以下、この章では「管理指針」という。)が示されている。

(2) 仮設機材の強度等の確認及び適正な管理
作業現場の安全確保には、仮設機材の製造時における強度等の確認・保証及び経年仮設機材の適正な管理が重要である。仮設機材の強度等の確認・保証について、(-社)仮設工業会では、製造時における足場用機材は、厚生労働大臣が定める規格及び認定基準に適合する旨を、刻印等により機材の全数に表示することを行っている。その表示等は、機材の種類により表2.1.1のとおりである。

なお、足場用機材の規格等に定めるもの以外のものの使用に当たっては、当該機材の製造者あるいは使用者により強度等について確認されたものであることが必要である。

現在製造されている主要な仮設機材は、防錆処理としてめっき、特に、浴融亜鉛めっきが施されているため、錆による肉厚の減少の懸念が少なくなった一方で、より長期にわたって使用される傾向となっており、経年による性能低下がないように適正に管理された仮設機材の使用が必要となる。仮設機材は、変形(曲がり、へこみ、反り等)及び損傷(亀裂、摩耗等)が直接性能低下の要因となるので、経年仮設機材の適正な管理は欠かすことができない。

このことから、厚生労働省の管理指針で規定している経年仮設機材に対して行う管理は、各機材ごとに定められた部位及び項目ごとに変形、損傷、錆等の程度による「選別」、経年仮設機材をいつでも使用できる状態に保持するための「整備」、機材を再使用可能な状態に復元する「修理」(部品交換を含む。)、さらに、性能試験、廃棄及び表示にわたるまで一連の管理基準等が明らかにされている。管理指針に基づき、(-社)仮設工業会では、仮設機材の整備、修理等を行っている機材センター等に対し、「適用工場制度」により、管理が適正である工場を認定し、経年仮設機材が適正な管理のもとに作業現場に提供されるようにしている。

表2.1.1 主な仮設機材とその表示

2章 仮設工事 2節 縄張り、遣方

2章 仮設工事


2節 縄張り、遣方、足場等

2.2.1 敷地の状況確認及び縄張り

(1) 敷地の状況確認
着工に先立ち受注者等が確認する敷地状況には次のような項目があり、監督職員は、受注者等から報告を受け、必要があれば確認、調査等に立ち会う。

(a) 敷地境界の確認
不明確な点があれば、関係者(20.5.1 (3)参照)の立会いを受けて明確にし、記録を残しておく。

(b) 既存構造物、地下埋設物の確認
建築物、工作物、地下鉄あるいは地中に埋設されたガス管、電線、電話ケーブル、給排水管、埋蔵文化財等を設計図書により確認するとともに、関係機関の協力を得て、設計図書に示されたもの以外に地下埋設物がないかを確認する。また、これらの埋設物が工事の障害となるおそれがある場合には、敷地境界、桝やマンホール等から位置を調べ、必要があれば試掘により確認して、必要な対策を講ずる。

なお、土壊汚染に関しては、1.3.10(1)を参照するとよい。

(c) 敷地の高低差及び既存樹木等の確認
敷地の高低差や既存樹木等に関しては、設計図書の指定による敷地の現場測量図等と、着工時の敷地の状況とが整合しているか確認する。また、現状測量図がない場合、必要な測量を実施するなど監督職員と協議する。

(d) 敷地周辺状況の確認
敷地周辺の交通屈や交通規制(特に通学路に注意)及び架空配線等を考慮し、建設機械や資材等の搬出入口の位置が適切かどうかを確認する。道路を占用・使用して工事を実施する場合は、事前に道路管理者及び署察署長に届ける。また、その工事エリアに柵や覆いを設けたり、交通整理員を配置するなどにより、道路交通の事故防止のための必要措置を講ずる(道路法施行令第2章参照)。テレビ電波等受信障害調査が実施されている場合は、工事中に障害が起きる可能性を考慮し、事前調査結果や近隣関係者との対応状況を確認しておく。

(e) 騒音・振動の影牌調査
騒音・振動については、周辺の環境に影響を与える工事や作業条件を事前に確認し、参考資料の資料1等を参照し、適切な処戦を検討しておく。

(f) 近隣建物調査
杭打ち工事、根切り工事等近隣に影響を与えるおそれのある工事を行う場合は、近隣建築物、工作物等に振動によるひび割れ、はく落、沈下等の事故が生じた場合の現状確認の資料とするため、関係者の立会いを求め、できるだけ写真、測量等により現状を記録しておく。さらに、工事中は常時これらの建築物等を観察し、必要な場合、悪影響を与えないよう事前の措置を講ずる。

(g) 排水経路と排水管の流末処理の確認
敷地の排水及び新設する建築物の排水管の勾配(通常1/100〜1/75)が、排水予定の排水本管・公設桝(市町村等で管理する桝)・水路等まで確保できるか、生活・事業系廃水(汚水)と雨水との区分の必要があるかなどを確認する。また、汚水の放流及び放流先(水路・溝等)の、地元管理者の同意の有無を確認しておく。

(2) 縄張り
建築物等の位置を決定するため、建築物外周の柱心、壁心が分かるよう縄等を張ることを縄張りという。建築物の位置と敷地の関係、道路や隣接建築物との関係等は、縄張りを行って確認する。

その際、監督職員は、縄張りの検査を行い、必要に応じて設計担当者の立会いを求め、建物位置を確認し、最終的に決定する。決定に当たっては、次の点に留意する。

(a) 敷地境界の確認
(b) 法規上の制約(斜線、延焼のおそれ、日影限界、避難距離等)
(c) 境界との離れ(設計図書に明示されている寸法確認、民法、施工上の問題等)

2.2.2 ベンチマーク

ベンチマークは、建築物等の高低及び位置の基準であり、移動するおそれのない既存の工作物あるいは新設した木杭、コンクリート杭等に高さの基準をしるしたものである。ベンチマークは、正確に設置し、移動のないようにその周囲を養生する必要がある(図2.2.1)。また、ベンチマークは、通常2箇所以上設け相互にチェックできるようにする。


図2.2.1 ベンチマークの例

監督職員は、ベンチマークの検査を行い、これを基にして敷地及び周辺道路の高低を測量させ、グランドライン(GL)を決定する。GLとは、基準となる地盤面の高さ又はその高さを表す線であり、現状地盤高や設計地盤高とは異なる場合がある。設計図書には設計GLだけが表示されていることが多いので、その場合には、設計GLと GLとの位置関係を明確にする。

なお、「JASS 2 仮設工事」や(-社)日本建築学会「建築学用語辞典」では、ベンチマークという用語を位置を決めるための基準点にも用いている。このように現在では、ベンチマークが高さと位置の両方を兼ねた基準として設けられる場合もある。

2.2.3 遣 方

(1) 遣方は、通常、図2.2.2のようなものであり、建築物の位置及び水平の基準を明確に表示し、次の (ア)から(ウ)のようにしてつくる。しかし、規模の大きな建築物等では遣方をつくらず、その都度測量機器を用いて、ベンチマークや固定物あるいは新設した杭等に設けた基準点から、建物のレベルあるいは建築物の基準墨を出すことが多い。


図2.2.2 遣方の例

(ア) 建築物隅角部、その中問部、根切り線の交差部等の要所で、根切り範囲から少し離れ、根切り後の移動のない位置に地杭〈水杭〉を打ち込む。昔から地杭の頭をいすか切りしているが、「いすか切り地杭」は、その頭部に物が当たったり、たたいたりした場合に、変状で移動をすぐに発見できるようにするための工夫である。

(イ) 地杭に高さの基準をしるし、かんな掛けを施した水貫の上端をその基準に合わせて水平に取り付ける。

(ウ) 工事に支障のない所に逃げ心(基準点)を設け、養生しておく。

(2) 監督職員は、追方の検査を行う。遣方の検査は、墨出しの順序を変えるなど、受注者等が行った方法とできるだけ異なった方法でチェックする。また、その工事現場専用の検査用鋼製巻尺を使用して実施する。

(3) 墨出し
墨出しとは、設計図書に示されたとおりの建築物を造るために、建築物各部の位置及び高さの基準を工事の進捗に合わせて、建築物の所定位置に表示する作業をいい、その建築物の出来上り精度に直接影響する大切な作業である。設計図書どおりの建築物を造るためには、建築物の着工から竣工に至る全工事期間を通じて一貫した位置及び高さの基準が必要である。

そのために、建築物の内外及び敷地周囲に基準高、通り心(基準墨又は親墨)、逃げ心等(ベンチマーク、基準点)を設けて、建物内の墨出し及び検査のための基準にしている。これを図面化し、「墨出し基準図」とし種々の要点を記入しておくとよい(図2.2.3)。


図2.2.3 墨出し基準図の例

墨出しの内容には、大別して表2.2.1に含まれるようなものがあるが、このうちの基準となる墨出しは、仮設工事の範ちゅうに入り、監督職員は、それらの検査を行う。

表2.2.1 施工段階の墨出し・計測作業の例

また、それぞれの墨出しは、次の(a)から(c)のような目的をもって行われる。

(a) 敷地及びその周辺の位置等の確認のための墨出し
(b) 施工のための墨出し
(c) 計測管理のための墨出し

捨コンクリートや1階床の墨出しは、上階の基準墨の基準となるので、建築物周囲の基準点から新たに測り出し、特に正確を期す必要がある。2階より上では、通常建築物の四隅の床に小さな穴を開けておき、下げ振り等により1階から上階に基準墨を上げている。この作業を「墨の引通し」という。

(4) 測量機器
墨出しに用いる一般的な測量機器には、セオドライト(又はトランシット)、レベル、鋼製巻尺、下げ振り、墨つぼ、さしがね、スタッフ(箱尺)、コンベックスルール等がある。計測距離が長い場合には、光波による計測器(光波測距儀)が用いられる。レベルやセオドライトに加えて、トータルステーション等の測定機器も用いられている。トータルステーションは光波測距像と電子式セオドライトを一体化した角度と距離を同時に測定できる測定機器である。

レベルやセオドライト、光波測距儀等の測定器は調整を必要とするので、作業所での使用に際して、事前に専門の業者により、検査、調整をさせる必要がある。
鋼製巻尺は、JIS B 7512(鋼製巻尺)に規定されている1級のものを使用する。

JIS 1級の鋼製巻尺でも1mにつき0.1mm程度の誤差が許容されており、50m巻尺では ±5mm程度の誤差を生じる可能性がある。したがって、通常は工事着手前にテープ合わせをし、同じ精度を有する巻尺を2本以上用意して、1本は基準巻尺として保管しておく。テープ合わせの際には、それぞれの鋼製巻尺に一定の張力を与えて相互の差を確認する必要がある。建築現場では、特に規定しない場合、通常50Nの張力としている。

また、鋼製巻尺は温度により伸縮するので、測定時の気温により温度補正を行う。標準温度20℃に対して、50m巻尺では10℃の温度差で5.75mm伸縮する。

2章 仮設工事 2節 足場等

2章 仮設工事


2節 縄張り、遣方、足場等

2.2.4 足場等

(1) 足場、作業構台、仮囲い等の仮設設備は、施工の安全確保、公衆災害防止のために重要なものである。このため、足場、作業構台、仮囲い等の仮設設備は、2.1.2で述べた適切な性能を有する材料の使用とともに、「標仕」2.2.4 (1)においては、労慟安全衛生法、建設工事公衆災害防止対策要綱(建築工事等編)その他関係法令等に基づき、適切な構造と保守管理をすることを定めている。これら関係法令等の関係条項は、(9)に示す。

また、足場、作業構台、仮囲い等の設置や使用時においては、労働災害防止のために必要な保護具(保護帽、墜落制止用器具等)の着用、使用が必要である。

なお、平成30年6月8日公布の労働安全衛生法施行令の一部改正により、胴ベルト型(U字つりを除く)安全帯及びフルハーネス型安全帯を指す法令用語として、「安全帯」は「墜落制止用器具」に改められた。

(2) 建設工事は、工事の竣工に向け、現場の状態が日々変化し、その進捗に合わせ、仮設設備は盛替えが必要になる。本設工事が円滑に進むよう適切な時期に、適正な盛替えを施す事前計画と工程管理が必要である。

また、仮設設備が不安全状態になると、危険な施工を強いることになりかねず、施工品質、工程、安全、環境等に悪影響を及ぼすことになる。良好な仮設設備維持のためには、組立・盛替え後の保守点検を始め、作業開始前、地震・悪天候後の保守点検を確実に行い、異常があれば補修・修理し、常に適正な状態にしておくことが必要である。加えて、足場、仮囲い等の仮設設備の設置,解体時、使用時においては、架空線、埋設物、周辺環境影響(騒音・粉じん抑止、路面・周辺清掃、照明確保等)、工事車両、一般交通車両、歩行者などに対し、事故・災害防止、環境保全のための防護・保護措置が必要になるので、これらについても十分に配慮する。

(3) 足場、作業構台等は、「標仕」2.2.4 (4)において、関連工事等の関係者にも無償で使用させるよう定めている。これは、関連工事等の関係者間における一連の工程に著しいずれ、むだ等が生じ、関連工事等の関係者間での無用なトラプルがないようにするためである。

なお、関連工事等の関係者各々が、自らの工事の都合において、これらの構造を部分的な改造を含め改変すること、設置期間を延長することなどは、「標仕」2.2.4 (4)の規定外のことである。

(4) 足 場
(ア) 足場とは、作業者を作業箇所に近接させて作業をさせるために設ける仮設の作業床及びこれを支持する仮設物のことである。

足場の設置では、労慟安全衛生法、建設工事公衆災害防止対策要綱(建築工事等編)その他関係法令等の遵守とともに、足場組立・解体等作業や、足場上作業の安全性を高めるために、「標仕」2.2.4 (2)は、「(別紙)手すり先行工法等に関するガイドライン」における「手すり先行工法による足場の組立て等に関する基準」、「働きやすい安心感のある足場に関する基準」に適合させることが必要であることを定めている。ただし、建築工事は、建築物の形状、周辺状況、作業方法等が様々に異なることから、工事要件に見合う足場形式の選定が必要であり、労慟安全衛生法、建設工事公衆災害防止対策要綱(建築工事等編)その他関係法令等を遵守のうえに、工事を安全で効率的に実施するための各種足場(表2.2.2参照)の適用を排除するものではない。

次に、足場設置時及び足場使用時の概観的な諸条件を示すので、これらの条件を満たす足場設置計画及び使い方をするとよい。

(a) 足場に使用する部材は、所定の構造、強度等を有し、その状態が2.1.2で述べた適正な部材であること。

(b) 足場は、人、物等の積載荷重、風荷重等に十分に耐えうる安定した堅固な構造とすること。また、足場は、作業中又は足場内を通行中に、できるだけ動揺がない構造にすること。

(c) 足場には、昇降設備、手すり・さん等の墜落防止設備、メッシュシート・幅木等の物体落下防止設備を配備したものとすること。

(d) 足場上の作業、足場内の通行に対し、必要な広さを有する作業床を設けること。

なお、床材(作業床)と建地(支柱)の隙問は12cm未満とする。つり足場を除き床材間の隙間は 3cm以下、つり足場は作業床に隙間がないようにする。

(e) 作業目的物と足場作業床の間隔は可能な限り近接して設けること。

(f) 足場作業床上の作業や通行の妨げとなる不要材料は、排除すること。また、足場上には長期に部材を仮置かないこと。

(g) 足場組立・解体作業等中に墜落の危険がある場合、足場上の作業内容によって、やむを得ず臨時に手すり・さん等の墜落防止設備を取り外しての作業の場合、足場から身を乗り出すなど墜落の危険がある作業の場合等では、墜落制止用器具等を使用すること。

(h) 作業の都合で、やむを得ず臨時に手すり・さん等の墜落防止設備、メッシュシート等の物体落下防止設備を取り外した場合は、作業終了後に必ず復旧すること。

(イ) 足場は、工事の種類、規模、構造、敷地及び隣接地の状況、工期等に応じ、施工性と安全作業に適したものを選定し、足場に関する関係法令等に従って堅固に設置する。

(ウ) 足場の材料は、著しい損傷、変形、腐食等があってはならない。特に木材は強度上箸しい欠点となる割れ、節、木目の傾斜等がないものを使用する。

(エ) 鋼管足場用部材及び附属金具、合板足場板は、厚生労働大臣の定める規格に適合するものを使用しなければならない。そのほかの足場部材は、その種類に応じ JISや、2.1.2に示す認定基埠に適合し、所定の性能、品質が保証されたものを使用することが必要である。

(オ) 鋼管足場の部材及び附属金具等の経年品は、厚生労働省通達の管理指針に基づき、2.1.2(2)により適正に管理されたものを使用する。

(カ) 足場に関する関係法令により定められた構造及び規格等に適合する足場以外は、試験、構造計鉢等によりその安全性を確認する。

(キ) 足場の計画では、倒壊・破壊に対する安全性、墜落に対する安全性、資材等の落下に対する安全性を考慮しなければならない。特に倒壊事故につながる風荷重が大きく作用する工事用シート、パネル等を取り付ける場合は風荷重の検討を十分に行い、壁つなぎ材を適切に設置するなどの対策が必要である。

(ク) 足場には、足場の構造、材料に応じて、作業床の最大積載荷重を定め、これを足場の見やすい箇所に表示し、作業者に周知する。この最大積載荷重を超えて積載してはならない。

(ケ) つり足場、張出し足場、高さ5m以上の足場の組立、解体又は変更の作業では、足場組立て等作業主任者の選任と、その氏名、職務を作業場の見やすい箇所に掲示することが必要である。また、足場の組立て、解体又は変更の作業に係る業務(地上又は堅固な床上における補助作業の業務を除く。)に従事する作業者は、この業務に関する特別教脊を受けた者とすることが必要である。

(コ) 足場の組立て、解体又は変更時の点検は、点検表を作成し実施する。

点検者は、足場の組立て等を行った事業者で足場の組立て等を担当した者以外の、足場に関し十分な知識と経験を有する者及び足場の組立て等の注文者で、足場に関し十分な知識と経験を有する者の両者により,点検を行うことが必要である。

なお、「十分な知識と経験を有する者」としては、次の者が適切な,点検者と想定されるので参考にされたい。

(a) 足場の組立て等作業主任者であって、労働安全衛生法(以下「法」という。)第19条の2に基づく足場の組立て等作業主任者能力向上教脊を受けた者
(b) 法第81条に規定する労働安全コンサルタント(試験の区分が土木又は建築である者)や厚生労働大臣の登録を受けた者が行う研修を修了した者等、法第 88条に基づく足場の設置等の届出に係る「計画作成参画者」に必要な資格を有する者

(c) 全国仮設安全事業協同組合が行う「仮設安全監理者資格取得講習」、建設業労働災害防止協会が行う「施工管理者等のための足場点検実務研修」を受けた者等、足場の点検に必要な専門的知識の習得のために行う教脊、研修又は講習を修了するなど、足場の安全点検について、上記(a)又は(b)に掲げる者と同等の知識・経験を有する者

(サ) 足場からの墜落・転落災害を防止するため、厚生労働省から「足場からの墜落・転落災害防止総合対策推進要綱」が平成27年5月に発出されているので、足場の設置に当たっては、この内容を踏まえることが必要である。

また、墜落制止用器具を使用して行う作業については、厚生労働省から「墜落制止用器具の安全な使用に関するガイドライン」が平成30年6月に発出されているので、これに基づくことが必要である。

なお、屋根工事及び小屋組の建方工事における墜落事故防止対策として、「標仕」 2.2.4(3)においては、JIS A 8971(屋根工事用足場及び施工方法)の施工標準に基づく足場及び装備機材を設置するとしている。

表2.2.2に、屋根面に設ける足場と装備機材との標準的な組合せを示す。
なお、詳細は同規格の「附属書A(規定)施工標準」によるものとする。
表2.2.2 屋根面に設ける足場と装備機材の組合せ(JIS A 8971より引用)

また、「足場先行工法に関するガイドライン」(平成18年2月10日付 基発第 0210001号)5 (12)には、小屋組における屋根からの墜落防止として次の3項目の措置を講ずることが示されている。

①屋根からの墜落防止のため、足場の建地を屋根の軒先の上に突き出し、その建地に手すりを設けること。手すりは、軒先から75cm(参考値[安衛則 563条]:85cm)以上(「建設業労働災害防止規程」では、90cm以上である。)の高さの位置に設け、かつ、中さんを設けること。(図2.2.4)


図2.2.4 屋根からの墜落防止措置の例

② 軒先と建地との間隔は、30cm以下とすること。

③ 屋根勾配が 6/10以上である場合又はすべりやすい材料の屋根下地の場合には、20cm以上の幅の作業床を2m以下の間隔で設置すること。(図2.2.5)


図2.2.5 屋根足場の設置の例

注図:建設業労働災害防止協会発行[木造家屋建築工事の作業指針
作業主任者技能溝習テキスト]より。(一部改変)
※:建設業労働災害防止協会
[建設業労慟災害防止規程]による数値

(シ) 足場の種類は、用途別及び構造別に分類を表2.2.3に示す。

表2.2.3 足場の用途別・構造別分類

(ス) 各足場の例を図2.2.6に示す。






図2.2.6 各足場の例

(セ) 足場の安全基準について、労働安全衛生規則等を踏まえて、その概要を表2.2.4に示す。

表2.2.4 足場の安全基準

(5) 仮囲い

(ア) 仮囲いは、工事現場周辺の道路・隣地との隔離、出入口以外からの入退場の防止、盗難の防止、通行人の安全、隣接物の保護等のために必要である。仮囲いは、工事現場の周囲に工事期間中を通し、建築基準法施行令、建設工事公衆災害防止対策要綱(建築工事等編)等に従って設ける。

(イ) 木造の建築物で、高さが13m若しくは軒の高さが9mを超えるもの又は木造以外で2階以上の建築物の工事を行う場合は、高さ1.8m以上の仮囲いを設ける。ただし、上記と同等以上の効力を有するほかの囲いがある場合又は工事現場の周辺若しくは工事の状況により危害防止上支障がない場合は、仮囲いを設けなくてもよい(建築基準法施行令第136条の2の20)。

(ウ) 仮囲いは、風、振動等に対して倒壊したり、仮囲いの一部が外れ飛散したりしない堅固な構造とする。

(エ) 仮囲いに出入口を設ける場合において、施錠できる構造とし、出入口は必要のない限り閉鎖しておく。また、出入口の開閉による車両等の出入りには、交通誘導員を配置するなどして、一般車両、歩行者等の通行に支障のないようにする。

(オ) 道路を借用して仮囲いを設置する場合は、道路管理者と所轄警察署長の許可を得る。

(6) 仮設通路
(ア) 階段
(a) 高さ又は深さが1.5mを超える箇所で作業を行うときは作業者が安全に昇降するための階段等を設ける(労働安全衛生規則第526条)。階段は、作業者が昇降するために、足場内や工事の進捗に従い建築物内外の仮設通路面等に設ける。

(b) 階段は踏外し、転倒等を防止するために、勾配、踏面、蹴上げ等に留意し適切かつ堅固に設ける。また、踏面は踏板面に滑り止め又は滑り止め効果のあるものを設ける。

(c) 踊り場は階段と一体となって機能する仮設通路であり、労働安全衛生規則第552条を準用し、高さが 8m以上の階段には、7m以内ごとに踊り場を設ける。枠組足場では建枠1層又は2層ごとに設けることが多い。

(d) 階段部分の縁や床面開口部及び踊り場で墜落の危険のある箇所には、高さ 85cm以上の丈夫な手すり及び高さ35cm以上50cm以下の中桟を設ける(労慟安全衛生規則第552条)。一般には、安全性を高めるため高さ90cm以上の丈夫な手すり及び内法が45cmを超えない間隔で中さんを設ける(建設業労働災害防止協会「建設業労働災害防止規程」、(-社)仮設工業会「墜落防止設備等に関する技術基準」参照)。

(e) 足場に使用されている階段は、専用踏板と足場用鋼管とで構成する階段(図2.2.7)と足場導用の階段枠(図2.2.8)の2種類がある。


図2.2.7 専用踏板と足場用鋼管とで構成する階段の例


図2.2.8 足場専用の階段枠の例

(仮設機材認定基準とその解説より)
(f) 枠組足場に使用する階段は、鋼管足場用の部材及び附属金具の規格(厚生労働省告示)、JIS A 8951(鋼管足場)の標準建枠高(階段の高さ)やスパン(階段の輻)寸法に合った専用規格階段を用いるとよい。階段は建枠横架材に架け渡し、上下連結部分は強風時の吹上げ力、衝撃、振動等で脱落、滑り、変形等が生じないように取り付ける。

なお、足場専用の階段枠は、(-社)仮設工業会の認定基準があり、その強度及び性能を定め、保証している。

枠組足場に使用する階段の計画例を図2.2.9に示す。


図2.2.9 階段計画の例

(イ) 登り桟橋

(a) 登り桟橋は、足場の昇降又は材料運搬等に用いるために設置された仮設の斜路で、足場板を斜めに架け渡し、適切な間隔に滑り止めのための横桟を打ち付け、手すり、中さん等を設けた構造である。

(b) 登り桟橋は、労働安全衛生規則第552条の架設通路の規定により、図2.2.10のような構造となる。

図2.2.10 登り桟橋

(c) 登り桟橋の幅は90cm以上確保することが望ましい。また、登り桟橋上が、雷、氷等により滑りが予想され、やむを得ずこの状態で登り桟橋を使用する場合に は、あらかじめ滑りを防止する処置を施す必要がある。

(ウ) その他の仮設通路
その他の仮設通路としては、様々なものが使用されてきているが、代表的なものとして、次のようなものがある。これらを用いる場合は、施工条件等や取扱い説明等に沿った適正な配置、使い方をしていくことが必要である。

(a) ハッチ式床付き布枠と昇降はしごが一体となった通路(図2.2.11(イ))は、足場において、足場昇降階段の設置が困難な場合や、緊急的な昇降に使用される。


図2.2.11 その他の仮設通路 (イ)

(b) ベランダ用昇降設備(図2.2.11(ロ))は、枠組足場等から、躯体内部に渡る通路であり、特に、ベランダ等の手すりの立上りを越えるために使用される。


図2.2.11 その他の仮設通路 (ロ)

(c) 鉄骨用通路(図2.2.11(ハ))は、鉄骨上に設けられ材料置き場や足場を結ぶ通路として使用される。


図2.2.11 その他の仮設通路 (ハ)

(7) 落下物に対する防護

(ア) 工事用シート等
工事現場からの飛来・落下物により、工事現場周辺の通行人や隣家への危害を防止するために、足場の外側面に工事用シート、パネル等を取り付ける(建築基準法施行令第136条の5第2項、建設工事公衆災害防止対策要綱(建築工事等編)第27参照)。また、労働安全衛生規則(第537条、第538条)では、足場等からの飛来・落下物による労働災害を防止するため、その危険のおそれのあるときは、幅木、防網(メッシュシート等)を取り付けることが定められている。

① 工事用シートは、帆布製のものと網地製のもの(メッシュシート)の2種類があり、JIS A 8952(建築工事用シート)の1類(シートだけで落下物の危害防止に使用できる)に適合するもの又はこれと同等以上の性能を有するものを使用する。シートは、通常、風荷重を緩和するメッシュシートが多く使用される。

なお、これについては、(-社)仮設工業会の認定基準がある。

② シートの取付けは、原則として、足場に水平材を垂直方向 5.5m以下ごとに設け、シートに設けられた全てのはとめを用い、隙間やたるみがないように緊結材を使用して足場に緊結する(シートに設けられたはとめの間隔は、 JIS A 8952では45cm以下としている。(-社)仮設工業会の認定基準では35 cm以下としている。)(図2.2.12)。緊結材は、引張強度が0.98kN以上のものを使用する。

③ その他にパネル、ネットフレーム等がある。

パネルは、パネル材とフレーム等で構成されたもので、工事騒音の外部への伝播を防止・軽減する役目も果たす防音パネルが一般的に用いられる。
なお、防音と落下物防護を兼ねた防音シートは、防音パネルと同様に用いられている。

ネットフレームは、金属網部(エキスパンドメタル)とフレームを溶接した構造であり、いずれも主に枠組足場に取り付けられる。

④ 建築工事用垂直ネットは、建築工事現場の鉄骨工事で飛来、落下物による災害を防ぐために、鉄骨(つり足場)等の外側面に垂直に取り付けられる。このネットは、合成繊維製の織網生地の織製ネット及び網製ネットで仕立てた、網目の寸法が 13〜18mmのもので、JIS A 8960(建築工事用垂直ネット)に適合するものを使用する。

なお、これについては、(-社)仮設工業会の認定基準がある。

(イ) 防護棚
外部足場から、ふ角75度を超える範囲又は水平距離 5m以内の範囲に隣家、一般の交通等に供せられている場所がある場合には、落下物による危害を防止するため、防護棚(朝顔)を設けなければならない(建設工事公衆災害防止対策要綱(建築工事等編)第23参照)。

① 防護棚のはね出しは、水平面に対し 20〜30゜の角度で、足場から水平距離で 2m以上とする。

② 防護棚は、1段目を地上10m以下、2段目以上は下段より10m以下ごとに設ける。通常、1段目は、地上5m以下に設けるのが望ましい。

③ 一般的に、防護棚は厚み1.6mmの鋼板が用いられてきたが、アルミ合金製の本体フレームにFRP製万能板の使用が増えている。


図2.2.12 工事用シートの取付け例

(8) 作業構台
作業構台には、地下工事等の材料の集積、建設機械の設置等のための乗入れ構台と、建築置材等の一部を仮置きして、建築物の内部に取り込むことなどのための荷受け構台(荷上げ構台)がある。

作業構台上は、常に整理整頓を行うとともに、作業構台自体の状態の保守管理を行い、点検結果を記録及び保管することが必要である。

(a) 乗入れ構台
① 乗入れ構台は、根切り、地下構造物、鉄骨建方、山留め架構の組立、解体等の工事を行う際に、自走式クレーン車・トラック類・生コン車・コンクリートポンプ車等の走行と作業、各資材の仮置き等に使用する。

② 乗入れ構台は、関係法令に従って設ける。(労働安全衛生規則第575条の2〜 8)

③ 使用する鋼材については、JIS適合品又は同等以上の強度をもつものとし、断面欠損や曲がり等、構造耐力上、欠点のないものを用いる。

④ 乗入れ構台の構造は、各種施工機械・車両の重量及びその走行や作業時の衝撃荷重、仮置き資材の荷重、構台の自重、地震・風・雪等の荷重に十分耐え得るものとする。

⑤ 乗入れ構台の計画上の要点は次のとおりである。
1) 乗入れ構台の規模と配置
規模は、敷地及びその周辺の状況、掘削面積、掘削部分の地盤性状、山留め工法、各工事で採用する工法等の条件により決定する。配置は、施工機械・車両の配置や動線、施工機械の能力、作業位置等により決定する。市街地工事では、駐車スペースの確保が難しいことから、可能な限り、余裕のある面積を確保する。

2) 乗入れ構台の幅員
通常計画される幅員は 4〜10mであるが、使用する施工機械、車両・アウトリガーの幅、配置及び動線等により決定する。構台に曲がりがある場合は、車両の回転半径を検討し、コーナ一部分の所要寸法を考慮して幅員を決定する。

3) 乗入れ構台の高さ、勾配等
・高さは、地下躯体(主として1階の梁・床)の作業性を考慮して決める。

・躯体コンクリート打込み時に、乗入れ構台の大引下の床の均し作業ができるように、大引下端を床上端より20〜 30cm程度上に設定する。

・乗込みスロープの勾配が急になると、施工機械・車両の出入りに支障となるおそれがあるので、通常は1/10 ~ 1/6程度とする。

・敷地境界から乗入れ構台までの距離が短い場合は、乗入れ構台のスロープが敷地境界から外に出ないよう留意することが必要である。

⑥ 一般的な乗入れ構台の架構形式と各部材の名称を図2.2.13に示す。

(b) 荷受け構台(荷上げ構台)
① 荷受け構台は、クレーンやリフト、エレベーター類からの材料の取込みに使用される作業構台で、材料置場と兼用することもある。

② 荷受け構台は、関係法令に従って設ける。(労働安全衛生規則第575条の2〜8)

③ 使用する材科は、木材にあっては割れ、腐れ、著しい断面欠損、曲がり等、鋼材にあっては著しい断面欠損、曲がり等、構造耐力上の欠点のないものを用いる。

④ 荷受け構台は、資機材の搬出入に適した位置に設け、揚重機の能力、揚重材料の形状・寸法・数量に応じた形状、規模のものとし、積載荷重等に対して十分に耐える安全な構造のものとする。

⑤ 設置位置は、材料の取込み及び水平運搬に便利な位置を選び、2〜3階に1箇所の割りで設置し、他の階にはそこから運ぶようにしていることがある。また、工事の進捗に伴って転用が必要な場合があるので、移動方法を考慮して設置位置を決めることが必要である。

なお、荷受け構台への資機材の仮置きはできる限り短期間とする。

⑥建築物本体の鉄骨を利用して、荷受け構台を建物外部にはね出して設置した計画例と足場に設けた例を図2.2.14に示す。


図2.2.13 乗入れ構台の架構形状と各部材の名称


図2.2.14 荷受け構台の例

(9) 関係法令等
足場、仮設通路、仮囲い等に関係する関係法令等を次に示す。

(a) 主な関係法令等
① 労働安全衛生法、同施行令、労働安全衛生規則
② 建築基準法、同施行令、同施行規則
③ 建設工事公衆災害防止対策要綱(建築工事等編)

(b) 主な労働安全衛生法関係
① 足場関連
・事業者の講ずべき措置等
労働安全衛生法第20条、第21条、第23条~第25条、第26条

・計画の届出等
労働安全衛生法第88条、労働安全衛生規則第86条

・計画の届出をすべき機械等
労働安全衛生規則第85条

・資格を有する者の参画に係わる工事又は仕事の範囲
労慟安全衛生規則第92条の2

・計画の作成に参画する者の資格
労慟安全衛生規則第92条の3

・作業主任者
労働安全衛生法第14条

・作業主任者を選任すべき作業
労働安全衛生法施行令第6条策十五号

・作業主任者の選任
労働安全衛生規則第16条

・足場の組立等作業主任者の選任
労働安全衛生規則第565条

・足場の組立等作業主任者の職務
労働安全衛生規則第566条

・安全衛生教育(特別教育)
労働安全衛生法第59条第3項、労働安全衛生規則第37条~第39条

・材料等
労働安全衛生規則第559条

・鋼管足場に使用する鋼管等
労働安全衛生規則節560条

・構造
労働安全衛生規則第561条

・作業床の設置等
労慟安全衛生規則第518条~第523条

・最大積載荷重
労働安全衛生規則第562条

・作業床
労働安全衛生規則第563条

・足場の組立等の作業
労働安全衛生規則第564条

・点検
労働安全衛生規則第567条

・つり足場の点検
労働安全衛生規則第568条

・鋼管足場
労働安全衛生規則第570条~第573条

・つり足場
労働安全衛生規則第574条、第575条

② 通路(登り桟橋含む)関連
・通路等
労働安全衛生規則第540条~第544条

・架設通路
労働安全衛生規則第552条

③ 階段関連
・昇降するための設備の設置等
労働安全衛生規則第526条

④ 作業構台(乗入れ構台・荷受け構台)関連
・作業構台
労働安全衛生規則第575条の2~8

⑤ 飛来落下物防護関連
・高所からの物体投下による危険の防止
労働安全衛生規則第536条

・物体の落下による危険の防止
労働安全衛生規則第537条、第563条第1項第六号

・物体の飛来による危険の防止
労働安全衛生規則第538条

・保護帽の着用
労働安全衛生規則第539条

(c) 建築基準法施行令関係
・仮囲い
建築基準法施行令第136条の2の20

・落下物に対する防護
建築基準法施行令第136条の5

・工事用材料の集積
建築基準法施行令第136条の7

(d) 建設工事公衆災害防止対策要綱(建築工事等編)
・飛来落下による危険防止 第11
・仮囲い、出入ロ     第23
・歩行者用仮設通路    第24
・乗入れ構台       第25
・荷受け構台       第26
・外部足場        第27
・防設棚         第28

2章 仮設工事 3節 仮設物

2章 仮設工事


3節 仮 設 物

2.3.1 監督職員事務所

(1) 仮設建物は、床荷重、風荷重等で倒壊しない構造とし、建築基準法、消防法等に従って設置する。

(2) 監督職員事務所

(ア) 「標仕」では、監督職員事務所に設ける電灯、給排水等の設備については、特記によるとされているが、特記がない場合は、監督職員と協議するとなっている。また、備品等の種類及び数量も、特記によるとされているが、これらは必要最小限にすべきである。

(イ) 「標仕」2.3.1(2)(ウ)の規定では、通信費は、受注者の負担となっているが、遠距離のため受注者に著しい負担をかけるような場合は、契約の際、明らかにしておくのがよい。また、光熱水費についても同様である。

(3) 受注者事務所その他
受注者事務所及びその他の仮設建物である休憩所、詰所、守衛所、便所、洗面所、更衣室、シャワー室等の設置に際しては、敷地条件等を考慮し、構造上、安全上、防火上及び衛生上支障のないように関係法令に基づき計画する。便所及び洗面所の 設置については、工事に影響がなく安全で利用しやすい場所に配置する。喫煙場所 は、屋外喫煙所の設置あるいは、屋内に設置する場合は空間分煙とした上で適切な 換気設備を設置するなど受動喫煙防止措置を講じるとともに消火器の配置を行う。また、清潔な食事スペースの確保、熱中症予防としての休憩所への冷房・冷水機等 の配備等、職場生活支援施設や疲労回復支援施設の充実を図る。

なお、作業員宿舎を設置する場合は、工事現場内から分離するものとし、建設業附属寄宿舎規程を遵守する。

(4) 表示板等
(ア) 地域住民への工事に関する情報提供のため、現場表示板を設ける。表示板には、工事名称、発注者名、施工者名、連絡先等を簡明に示す(図2.3.1参照)。

(イ) その他法令等による次の表示板を見やすい所に掲げる。
(a) 建設業の許可票(建設業法第40条、建設業法施行規則第25条)

(b) 建築基準法による確認済の表示(建築基準法第89条、建築基誰法施行規則第11条)

(c) 労災保険関係成立票(労働保険の保険科の徴収等に関する法律施行規則策77条)

(d) 道路占用許可証(道路法第32条、道路法施行令第7条)

(e) 道路使用許可証(逍路交通法第77条)

(f) その他(施工体系図(建設業法第24条の7)、建設業退職金共済制度適用事業主工事現場標識(中小企業退職金共済法)等)


図2.3.1 現場表示板の例

2.3.2 危険物貯蔵所

危険物には、灯油、塗料、油類、ボンベ類、火薬等があり、危険物貯蔵所は、次の事項に注意して設ける。

(ア) 仮設建物、隣地の建築物、材料費場等から離れた場所に設ける。設置スペースがないなど、やむを得ず工事目的物の一部を危険物置場として使用するときは、貯蔵戴等の関係法令が遵守されているか注意する。

(イ) 不燃材料を用いて囲い、周囲に空地を設ける。

(ウ) 各出入口には錠をかけ、「火気厳禁」の表示を行い、消火器等を設け、安全対策を講ずる。

(エ) 塗料、油類等の引火性材料の貯蔵所については、18.1.4(1)(ア)(e)を参照する。
また、ボンベ類置場は、通気がよく、他の建物と十分な離隔距離をとった直射日光を遮る構造とし、危険物や火気厳禁の表示及び消火器の配置を行う。

(オ) 取扱いについては、次に示す関係法令に規定されているので注意する。

(a) 消防法(第3章危険物第10条~第16条の9)
(b) 危険物の規制に関する政令
(c) 危険物の規制に関する規則
(d) 労慟安全衛生規則(第2編第4章第2節危険物等の取扱い等、第4節火気等の管理等)
(e) 建設工事公衆災害防止対策要綱(建築工事等編)(第19危険物貯蔵)

2.3.3 材料置場、下小屋

必要に応じて材料費場、下小屋を設ける。また、廃棄物の再費源化に努めるため、分別作業が可能なスペースと分別容器が設置可能な廃棄物分別置場(ヤード)を設ける。

なお、材料置場は、良好な材料保管ができるような構造とする。

(ア) 砂、砂利、セメント、鉄筋、鉄骨等の材料置場は、泥土等で汚れないように留意する。砂、砂利の場合、床を周囲地盤より高くしたり、水勾配を付けるなどの処理を行う。鉄筋や鉄骨の場合、受材を置き、泥土が付かないようにする。セメント等、吸水してはならないものは、雨水が掛からないように、屋根の付いた置場に保管する。

(イ) 下小屋とは、型枠や鉄筋の加工場やその他配管のねじ切り等の加工場をいう。

(ウ) 廃棄物分別置場(ヤード)は、廃棄物の搬出が容易な場所に設置する。
なお、現場に持ち込まれるこん包材等の減量化にも努めることが必要である。

2.3.4 工事用電気設備、工事用給排水設備

(1) 工事用電気設備は、工事を進めるための動力、照明、通信等に必要とする電力を供給する設備であり、着工から竣工までのほぼ全工程にわたって使用され、仮設工事の中でも重要な位置を占めるものである。

工事の進捗に伴い、負荷設備の増設・変更、設備の移動・盛替え等が多くなり、それに対応する配線等の保守管理が複雑になる。また、配線等は損傷を受けやすく、劣化も早く、粗雑に扱えば感電災害のリスクが高くなる。したがって、受電設備、幹線配線、負荷設備等一連の計画は、現場の条件や工程を十分に把握して、綿密な 事前計画が重要になる。また、運用管理に当たっては、十分な保守が必要である。

なお、工事用電気設備工事では、電気工事士法による電気工事士の資格等(1.3.3及び表1.3.3参照)、労働安全衛生規則の電気取扱い業務特別教育が必要になる。
工事用電気設備の計画から撤去までの作業手順を図2.3.2に示す

(ア) 申請手続き
電気設備の設置及び電力の使用に当たっては、電力会社への電力使用の申込みのほかに、契約電力によっては、経済産業大臣(又は所轄の経済産業局長)及び所轄の消防署長へ届け出なければならない(電気使用制限等規則)。

なお、電力使用申込みから受電までに1箇月余りを要するので、手続きはこの
期間を見込んでおく必要がある。

(イ) 保安責任者
工事用電力設備の保安責任者が、法令に基づいた有資格者であることを確認する(1.3.4及び表1.3.2参照)。


図2.3.2 工事用電気設備の計画から撤去までの作業手順の例

(ウ) 本設への切替え
竣工が近づき、本設の電気設備が受電され、工事用電気設備を撤去する際は、受注者等からの申出を受け、本設への切替えについて協議し、工事用電気設備の撤去の時期や本設への切替えの方法等を事前に決定するとともに、切換え時における感電災害の防止措置を講じる。

(2) 工事用給排水設備には、工事関係者が飲料あるいは洗顔・水洗等に使用する生活水や、基礎杭の施工や型枠の清掃等、工事に使用する工事用水を供給する給水設備と、生活水から生じる雑排水、地下水や雨水を処理する排水設備とがあり、工事を進めるのための重要な設備である。

(ア) 計画
給水設備は、施工計画や工事工程表から、生活用水や工事用水の使用時期、使用場所、使用水量を把握し、水源、要求される水質、水圧、水量等を勘案して、引込み設備、貯水設備、ポンプ設備、配管設備等を計画する。

排水設備は、各工事の施工方法、工事に従事する人員等を確認して、汚水、雑排水、地下水・雨水、特殊排水等、排水の種類ごとに排水時期、排水場所、排水量等を把握し、公共下水道の利用の可否等を勘案して、適切な排水方法を選定する。

(イ) 申請手続き
給水装置を新設、改造又は増設する場合は、水道事業者(地方公共団体の水道局)に届け出る(水道法)。

また、公共下水道に排水するために必要な排水設備を新設、改造又は増設する場合は、公共下水道管理者(地方公共団体の下水道局)に届け出る(下水述法)。
なお、給水、排水の届け出から認可までに1箇月余りを要するので、手続きはこの期間を見込んでおく必要がある。

2章 仮設工事 4節 仮設物撤去等

2章 仮設工事


4節 仮設物撤去等

2.4.1 仮設物撤去等
(1) 工事の進捗に伴い、あるいは外構工事等のために既設の監督職員事務所、受注者事務所等が障害となり、これを撤去し、他の場所に新設あるいは移設する必要がでてくる。

このような場合、通常は工事を行っている敷地内の別の場所に新設あるいは移設することになるが、そのような場所がない場合には工事を行っている建築物の一部を使用することになる。

工事敷地内に新設あるいは移設する場合には、場所や敷地内の人や工事で使用する車両等の通行状況を、また、工事目的物の一部を使用する場合には、工事完成後の入居の予定を、管理官署と事前に打ち合わせておく必要がある。

(2) 工事が完成する時までには、工事で使用した仮設物を撤去する。
工事目的物の一部を使用した場合には、設計図書で示されたとおりにして工事を完成させる。仮設物を撤去した跡及び付近は清掃、地均し等を行っておく。

(3) 仮設物を解体する際には、あらかじめ解体手順を決定し、解体中の仮設物が崩壊・倒壊しないよう災害防止に努める。解体時に作業主任者等の有資格者が必要な場合には、関係法令に従い、有資格者が配置されている必要がある。