1級建築施工管理技士 設備工事 雷から人・建物・設備を守る

建築品質 設備


99)雷から人・建物・設備を守る

大気中で発生した雷は建物を直撃して破壊し、建物内部に侵入した誘導雷は絶縁破壊を引き起こし、建築設備に障害を引き起こす。
建築基準法では、建物の高さが20mを超える部分を旧JIS或いは新JISで規定する避雷設備の設置を義務付けている。ただし、市区町村によっては火災予防条例等により、新JISによる避雷設備を指導する場合があるので確認が必要である。

1.外壁面への側撃雷からの保護

建物が高さ60mを超えると、外壁への側撃雷を受けやすくなる。特に建物のコーナー部分や集合住宅の最上部バルコニー屋根庇等の突起部は避雷設備の保護角内であっても側撃雷を受けて、建物が損傷する事故がある。避雷設備は雷撃による損傷を最小限に抑えることができても、落雷は防げない。側撃雷からの保護対策が必要となる。


建物高さが60mを超えた場合の側撃雷からの保護

2.避雷設備設置の留意点

①旧JISでは、避雷針の保護角は一般建物では60° 以下、危険物を扱う貯蔵所等では45° 以下と規定している。建物高さが60m以上になると、旧JISの避雷針では側撃雷による落雷は防げない。

②新JISによる保護レベルに応じた受雷部の配置をすることが望ましい。


新JISによる保護レベルと受雷部の配置
③金属笠木や屋上外周部に設けられた金属手すりは、相互に電気的に接続すれば棟上げ導体として使用できる。メンテナンス用のタラップや鉄骨階段が棟上げ導体より突出する場合は、棟上げ導体に電気的に接続し保護する必要がある。

階段は棟上げ導体に接続して保護
ただし、棟上げ導体の保護範囲は導体から水平距離で10m以内である。

④自立型避雷突針が全長6mを超えると、強風時の揺れで躯体に共振して、下階の居住者に不快な音や振動を与える。集合住宅は棟上げ導体方式の採用がよい。

⑤近くに落雷した雷が配電線や通信線を通じて建物内に侵入し、電子機器の誤動作や建築設備の障害を引き起こす。電子機器の保護のためサージ保護デバイス(SPD)の設置が必要となる。

⑥屋上の設備機器と避雷導体との離隔距離は1.5m以上確保する。屋上が狭くて離隔距離を確保するのが困難な場合は設置極(アースボンド)を設ける。

屋上設備機器と避雷導体の離隔

1級建築施工管理技士 設備工事 爆発から建物を守る

建築品質 設備


100)爆発から建物を守る

燃焼の伝搬速度が急速な燃焼を爆発といい、衝撃波を伴い超音速で伝搬するもの爆轟、秒速数メートル以上の音速に近い速度で火炎が伝播するものを爆燃という。
爆発は次の三つの要素が揃うことで発生する。

①可燃性ガスや引火性液体の蒸気、粉体といった燃えるもととなる可燃物
②燃焼を起こす酸素などの支燃性ガス
③電気火花や高温部などの点火源

水素などの可燃性ガスが空気と混合すると燃発性のガスとなり、このガスが電気回路の接点部からの電気火花や静電気の放電、高温度の物体などの点火源に触れることにより爆発が起きる。
可燃物となるのは化学物質等ばかりではない。機械加工時に発生する金属粉や食用の小麦粉などでも条件が揃えば粉塵爆発を起こす。

1.さまざまな爆発

①粉塵爆発
小麦粉や砂糖等の通常は発火物とは言わない物質でも空気中に小さな粉塵となって浮遊していると非常に燃えやすい状態となり爆発を起こす場合がある。

②ガス爆発
可燃性物質であるガスが密封された状態で充満している時に、点火エネルギーがあると強い爆発が起こる。爆発の大半がこのガス爆発である。都市ガスのガス管はガスで充満しているが、ガス管内に酸素が存在しないため、発火点まで温度が上昇しても燃えることはない。

③混合爆発
二つの物質を混ぜ合わせ衝撃を与えることによって引き起こされる爆発をいう。亜鉛と硝酸塩、亜鉛と過マンガン酸カリ、マグネシウムと硝酸塩等は混合するだけで爆発する。硫黄と硝酸銀、炭素と硝酸銀等は衝撃を与えると爆発する。

④水蒸気爆発
高温の金属と水が接触した時に水が水素と酸素に分解し、その水素に点火し爆発を起こす場合と、高温によって爆発的な速度で水蒸気になり体積を急激に増やすことで爆発現象を起こす場合がある。高温の溶融炉の事故や火災現場で消火活動中に起きる事故等は前者のケースで、火山の水蒸気爆発は後者のケースを示す。

2.防爆対策について

可燃性ガスや粉体を取り扱う工場では、爆発事故を防止するために爆発性雰囲気が発生しないように換気することや、点火源をなくす、あるいはスパークして点火源となる可能性のある電気機械器具は隔離することが必要となる。労働安全衛生規則では事業者に対して、爆発・火災の危険性が生じる濃度に達する可能性がある危険場所では、防爆構造の電気機械器具の使用を義務付けている。
電気機械器具の防爆構造には、ガス蒸気に対する防爆仕様と粉塵に対する防爆仕様がある。防爆対策についえの規制内容の詳細は、労働安全衛生法(厚生労働省所管)や消防法(総務省所管、各自治体消防署)、電気事業法(経済産業省所管)の関連法規を参照する。


避難誘導灯の防爆仕様


非常照明の防爆仕様


設備操作スイッチの防爆仕様


自動火災報知赤色灯の防爆仕様

間違いやすい部分

経験記述の注意事項
文字の間違いは
一文字間違う毎に減点がかさなるので
注意が必要です。
注意するべき文字
抑制という文字
「抑」 → 手へんに迎える之の上に載っているものです
      「卯」ではないので注意
「制」 → 「製」ではないので注意
あなたの考えを求めらせる記述は
その文章の末尾は過去形ではなく、現在形でしめくくる。
例) ×「した」 → ◯「する」「するべきである」など

1級建築施工管理技士 く体工事 基礎工事

第4章 地業工事 杭工事 

———————————————-
◆◆ 既成コンクリート杭 ◆◆
———————————————-
1)杭の運搬及び取扱い
①杭の運搬及び取扱い 積込み・荷降し 2点、1/5の箇所
②杭の建込み 杭上端部から 2mの位置を吊り点位置とする
2)打ち込み工法
①打撃工法
 ディーゼルハンマ、ドロップハンマ(もんけん)
 バイブロハンマ、油圧ハンマ
②プレボーリング併用打撃工法
 オーガーによる掘削径
 通常、粘性土の場合、 杭径 – 50mm
③杭の打込み
 一群の場合 中心から外側へ
 一本の打込みは中断しない
④杭の打止め
 指定された深さで行う
 支持層まで到達すること
3)埋込み工法
①プレボーリング工法(セメントミルク工法)
 【 アースオーガーによる掘削の施工上の留意事項 】
・屈進速度が速すぎると、
 先端の掘削ビットに過大な負担がかかり、
 ビットが横に逃げたり、ロッドが曲がるなどして、
 掘削孔の曲がりが生じやすくなる。
 土質によって屈進速度を変える必要がある。 
 → 硬い地盤ほどゆっくり掘削する。
・掘削中に孔壁の崩壊が生じるおそれがある場合は、
 必要に応じて掘削液(安定液)を使用する。
・アースオーガーの引き上げに当たっては、
 負圧によって地盤を緩めないように
 ゆっくりと正回転で引き上げる。
・掘削土は、杭の高止まりが生じないように十分排出する。
 
【 杭の建て込みの施工上の留意事項 】
・掘削孔壁が崩壊することがないように、速やかに行う。
 孔壁の崩壊は高止まりの原因となる。
・孔壁や杭体を損傷することのないよう、
 鉛直に吊り下げた状態でゆっくり行う。
・建て込み後に杭が自沈するおそれのある場合は、
 固定ち具などにより杭を保持し、
 自沈しないように設置高さの位置で固定しておく。
②中掘り工法:
杭中空部にオーガー等を挿入し、杭先端地盤を掘削しながら、杭中空部から排土して杭を設置する工法。 
直径 500mm以上に適する
杭先端にはフリクションカッターを取り付ける
4)杭の継手
①溶接継手または接続金具による無溶接継手とする。
②【 溶接継手の留意事項 】
・溶接は原則としてアーク溶接とする。
・継手部の開先の目違い量(杭心のずれ)は 2mm以下
 許容できるルート間隔(杭間のすき間)は 4mm以下
・仮付け溶接は、点付け程度のものでなく、
 必ず 40mm以上の長さとし、本溶接と同等のものとする。
・溶接の盛上げの不足があってはならないが、
 余盛りは 3mm以下とし、不要な余盛りは行わない。
・杭の継手を手溶接とする場合、
 JISに定める A-2H 程度の有資格者に行わせる。
・継杭における下杭の打残しは、
 溶接作業に都合のよい高さ( 1m程度)とする。
・風速が 10m/s 以上ある場合、
 適切な防風措置を講じて溶接作業を行う。
5)杭の施工精度
・杭頭の設計位置と水平方法のずれ
 D/4( D は杭径)以内、かつ 100mm以内
・杭の傾斜
 1/100 以内
※許容範囲を超えた場合には設計者に確認及び検討が必要である。



—————————————————
◆◆ 場所打ちコンクリート杭 ◆◆
—————————————————
1)施工
①コンクリートの調合
・一般に養生温度による強度補正は行わない。
 mSn = 0
 特記のない場合は、
 構造体強度補正値の値は 3 N/mm2とする。
・調合は共仕によると
 A種 c/w 60%、、スランプ 18㎝、粗骨材Max25mm、
   単位セメント量 310 kg/m3(無水掘りの場合)
 B種 c/w 55%、、スランプ 18㎝、粗骨材Max25mm、
   単位セメント量 340 kg/m3(無水掘り以外)
②掘 削
・試験掘削に使用する安定液の品質試験は、
 粘性、比重、ろ過水量、pH、砂分、塩分の全項目について行い、
 以後は粘性及び比重について行う。
・杭の先端部は所定の支持地盤に確実に到達させ、
 原則として、杭先端は支持地盤に 1m以上根入れさせる。
・掘削深さの確認は、
 重錘(じゅうすい)と検測テープを用いて
 杭底の2箇所以上で測定する。
③スライム処理(杭底処理)
・スライムとは、孔内の崩落土、泥水中の土砂等が沈殿したもの。
 杭底部のスライムの介在は先端支持力を著しく低下させるので、
 スライムの除去は確実に行わなければならない。
・スライムの処理には、
 1次スライム処理(掘削完了直後に行う)と
 2次スライム処理(コンクリート打設直前に行う)がある。
④鉄筋かごの組立て・吊込み(建込み)
・鉄筋かごの組立て(主筋と帯筋等)は、
 原則として、0.8mm以上の鉄線で結束する。
 ただし、帯筋の継手は片面 10d 以上のフレアーグルーブ溶接とし、
 補強リングは、主筋に断面欠損を起こさないように堅固に溶接する。
・鉄筋のかぶり厚さは、
 アースドリル及びリバース工法では 10~15㎝程度、
 オールケーシング工法では 15㎝程度で設計されることが多い。
・鉄筋かごは、かぶり厚さを確保するために、
 スペーサーを深さ方向に 3~5m間隔を目安として、
 断面4箇所以上取り付ける。
 設計図によるが、かご主筋への取り付けはさける。
 がご主筋に設置する場合は、
 アンダーカットに注意する。
・通常、鉄筋かごは掘削前に組み立てておく。
 したがって、掘削後の検測で、
 鉄筋かごの長さと掘削孔の深さに差がある場合がある。
 掘削孔の深さが浅い場合には、最下段に鉄筋かごで長さを調整する。
 これは杭は一般に上部の方が配筋量が多いので、
 上部の配筋が不足しないように配慮したものである。
・鉄筋かごの建起こしと建込みは、
 かごに有害な変形が生じないように行う。
 また、建込みは、孔壁を崩壊しないように、
 鉄筋かごを杭中心に合わせ鉛直性を保ちながら行う。
⑤コンクリートの打設等
・コンクリートの打ち込みは、泥水を巻き込むことがなく
 良質なコンクリートに置換するために
 原則としてトレミー菅を用いる。
・コンクリート打ち込み開始時には、
 プランジャーをトレミー菅内の泥水(安定液)
 の上に乗った形で設置して、
 コンクリートと泥水等が混ざり合うのを防ぎ、
 下部か泥水等を押し上げるようにコンクリートを打設する。
・トレミー菅及びケーシングチューブ(オールケーシング工法の場合)は、
 これを引き抜きながらコンクリートの打ち込みを行う。
 このとき、トレミー菅及びケーシングチューブの先端は、
 コンクリートの中に常に 2m以上入ってるように保持する。
・杭底から押し上げられてきた不健全なコンクリートを、
 余盛り部分に集めてコンクリート硬化後削り取る。
【 場所打ちコンクリート杭の余盛りの高さ 】
孔中に水が少ない場合 オールケーシング       50㎝以上
孔中に水が多い場合  アースドリル、リバース 80~100㎝程度
※上記余盛り高さを確保するため、スタンドパイプ取り外し後に、杭頭レベルが若干下がることを考慮してコンクリート打設完了時は少し高いめのレベルに設定しておく。
・杭築造完了後、
 杭孔周囲の地盤の崩壊防止と転落防止のため
 空掘り部分の埋戻しを行う。
 埋戻しの時期は、コンクリート打込みの翌日以降、
 杭頭のコンクリートが初期硬化をしてから行う。
2)施工後の処理
①施工精度
杭の水平方向のずれ 100mm以下、傾斜 1/100以下
・断面寸法は、設計断面以下にならないことを基準とする。
 拡底径の場合は、拡底率が設計に関わる場合があるので注意する。
・鉛直精度や杭径は、通常、超音波孔壁測定結果から求める。
②杭頭の処理
 余盛り部分や不良コンクリート部分をはつり取り、
 健全なコンクリートを露出させる。
【 杭頭処理の施工上の留意事項 】
・コンクリート打込みから 14日程度経過した後、
 所定のコンクリートの強度が得られてから行う。
・はつり作業に際しては、
 杭本体へのひび割れや損傷防止に留意し、
 平らにはつり取り、所定の高さにそろえる。
・設計図書に示された高さまで余盛り部分を除去しても、
 杭頭コンクリートに不良部分が残る場合がある。
 その場合には、不良部分を除去し、
 コンクリートを打ち直さなければならない。



3)代表的な工法の概要
アースドリル工法(地盤ドリル工法)
 表層ケーシングを建て込み、回転バケットで掘削する。
   ↓
 掘削完了後、スライムを除去する。
   ↓
 鉄筋かごを挿入し、トレミー菅をセットして
 必要に応じて再度スライムを除去する。
   ↓
 コンクリートを打込む。
   ↓
 空掘り部分を埋め戻す。
・掘削孔壁の保護は、地盤表層部はケーシングにより、
 ケーシング下端以深は、
 ベントナイト、CMCを主体とする安定液により
 孔壁にできるマッドケーキ(不透水膜)と水頭圧により保護する。
・安定液の粘性
 安定液はベントナイト、CMC、分散剤等からなり、
 分散剤は液の劣化を防ぎ、くり返し使用を可能にするもの。
 安定液の配合は、必要な造壁性・比重のもので、
 短時間で砂分を沈降させるため、
 できるだけ低粘性・低比重のものとするのがよい。
・粘性はファンネル粘性で表されるが、
 その数字が大きいほど粘性は高い。
・必要粘性とは、対象地盤に必要とする粘性をいい、
 作液粘性とは、新しく作った安定液の粘性をいう。
 アースドリル工法では、
 安定液をくり返し使用すると粘性が小さくなることが多いので、
 一般的に、作液粘性は必要粘性より大きくする。
・くり返し使用する場合の安定液は、
 粘性、比重、砂分、ろ過水量、ケーキ、pHについて
 管理しながら施工する。
・支持層の確認は、全杭についてバケット内の土砂を、
 土質柱状図及び土質資料と対比し、併せて記録する。
・1次スライム処理:底ざらいバケットで処理する。
・1次処理に用いる底ざらいバケットは杭径より 10㎝小さいものを用いる
・1次処理に用いる底ざらいバケットの昇降は、
 孔壁が崩壊することがないよに緩やかに行う。
・2次スライム処理:
 水中ポンプ方式、エアーリフト方式等で処理する。
リバース工法(リバースサーキュレーション工法)
・スタンドパイプを建て込み、
 その部分をハンマーグラブで掘削する。
   ↓
 その後は回転ビットで掘削し、
 掘削完了後スライムを除去する。
   ↓
 鉄筋かごを挿入し、
 トレミー菅をセットして必要に応じて再度スライム除去する。
   ↓
 コンクリートを打込む。
   ↓
 空掘り部分を埋め戻す。
・特殊な回転ビットを地上に設置したロータリーテーブルを通じて
 緩やかに回転させて掘削し、
 排土は水に混じった掘削孔底部の土砂を水と一緒に逆循環方式で吸い上げて行う。
・孔壁保護は、原則として水(土質によってはベントナイト溶液を使用することもある)を用い、静水圧を 0.02 N/mm2以上に保つことにより孔壁の崩壊を防ぐ工法なので、掘削に際しては地下水位を確認し、水頭差を 2.0m以上に保つようにする。スタンドパイプは、地表面部分の孔壁の崩壊を防ぐ役割を果たすとともに、その水頭差を確保するために掘削孔頭部にのみ貫入させるものである。また、スタンドパイプの径は、杭の孔径より、150〜200mm大きくする。
・支持層の確認は、全杭について、デリバリーホースの末端から掘削土砂を採取し、土質柱状図及び土質資料と対比して行い記録する。
・1次スライムの処理
 回転ビットを孔底より若干引き上げて、空回しして吸い上げる。
・2次スライムの処理
 トレミー菅とサクションポンプ等により処理する。
・スタンドパイプは、地表面の崩壊防止にも役立つので、コンクリートを所定の高さまで打設しトレミー菅を引き抜いた後に引き抜く。
オールケーシング工法(ベノト工法)
 ケーシングチューブを圧入しながら、ハンマーグラブで掘削する。
   ↓
 掘削完了後、スライムを除去する。
   ↓
 鉄筋かごを挿入し、トレミー菅をセットして
 必要に応じて再度スライムを除去する。
   ↓
 コンクリートを打込む。
   ↓
 空掘り部分をうめ戻す。
・掘削にあたって、
 掘削孔全長にわたってケーシングチューブを使用するので、
 孔壁の崩壊が少ない。
・孔壁の保護は、基本的にケーシングチューブを用いるが、
 ボイリング、ヒービングが発生するおそれがある場合は、
 孔内に水をはり防止する。
・支持層の確認は、
 全杭についてハンマーグラブでつかみ上げた土砂を、
 土質柱状図及び土質資料と対比し、併せて記録する。
・1次スライム処理:
 孔内水がない場合やわずかな場合は、
 ハンマーグラブで杭底処理する。
 孔内水が多い場合は、
 その後、沈殿バケット(スライムバケット)で処理する。
・2次スライム処理:
 水中ポンプ方式、エアーリフト方式等で処理する。
・ケーシングチューブを急速に引き抜くと
 コンクリートに泥水等を巻き込むことになるので、
 十分に注意する。
・鉄筋かごがケーシングチューブに接触して浮き上がってしまう
 鉄筋の供上がりが発生した場合は、
 早期発見が大切で、
 鉄筋頂部から供上がりチェック用の鉄線を
 ケーシングチューブ天端まで伸ばしておき、
 引き抜き初期にチェックを行う。
・供上がり防止策
 ・ケーシングチューブの内面をよく清掃する
 ・ケーシングチューブは、
  変形・曲がりのないものを鉛直に建て込む
 ・スペーサーの形状、高さ及び位置に注意する。
 ・鉄筋かごを曲がりや変形のないように建て込む。
工法の特性.jpg


1級建築施工管理技士 く体工事 地業工事 地盤改良

第4章 地業工事 地盤改良工事

深層地盤改良の工法
エスミコラム工法やエポコラム工法など

————————————————————-
エポコラム工法(籠式複合相対回転攪拌工法)
————————————————————-

(一財) 先端建設技術センター建設技術審査証明取得
技審証第 1704号
(一社) 農業農村整備情報総合センター 登録 No.0223

【 概 要 】

エポコラム工法は,地盤中にセメントスラリーを注入し,
籠状攪拌翼の外翼と芯翼,中翼と掘削ヘッドが相対して回転する複合相対攪拌機構により,
三次元的な混合・練込みを行う工法である。
低速回転・高トルクによる大口径コラムの築造や
礫層・硬質地盤対応が可能な技術として技術審査証明を取得している。

【 特 徴 】

施工コストの軽減と工期短縮
大口径コラムの築造で、一工程当たりの施工量の増大が図れ、
施工コストの軽減と工期の短縮が可能。
(コラム径 標準Ø1.6m〜最大Ø2.5m)

1.攪拌性能が高い
エポコラム翼の『羽根切り作用』とそれに伴う『練込み作用』によって、
土壌とセメント系スラリーとの均一拡散や土塊の崩壊を促進させるため攪拌性能が高い。

2.コラム相互の接合隔着が完全
外翼が攪拌翼土中の土塊を抱え込み、翼外部へ「まきだし現象」がないことから、
コラム相互のラップ部の接合隔着が可能。

3.転石層でも混練攪拌性に優れる
エポコラム翼の主翼は両端部が回転軸に固定されているため、
転石等に遭遇しても損傷し難く、また礫層を押圧せずに掘進する機能を持ち、
転石層でも混練攪拌性に優れている。

4.杭芯の精度保持性が高い
回転軸の剛性が高く、翼の相対回転による求心性の効果で杭芯の精度保持性が高い。

【 適用目的 】

1.盛土・切土のすべり防止
2.圧密沈下の低減
3.支持力の増大
4.土圧の低減
5.変形・変位の防止
6.重要構造物の防護
7.建築物の基礎
8.耐震補強・液状化対策
9.土壌汚染対策(現位置浄化・不要化・封込め)
10.その他改良工事

【 エポコラム翼機構 】

エポコラム翼の回転機能は外翼と内翼が同一方向に回転し、
中翼と削孔ヘッドが、逆回転する機構を有する複合相対回転翼である。
各々の外翼3枚および内翼・中翼各2枚が『羽根切り作用』に伴って、
相対回転する翼間 の土壌が対流流動を強制され、
土壌と固化材との『練り込み作用』によって、
コラム体中に固化材の均一拡散や土塊の崩壊を連続的に繰り返し、
均質なコラムを造成する。
epocolu_00b[1].jpg

【 エポコラム工法の施工手順 】

epocol_1a[1].jpg

【 エポコラム工法の特徴を生かした新工法 】

エポコラム工法の特徴である低速回転・高トルクを生かした新工法として
エポコラム-Loto工法,エポコラム-Taf工法がある

①エポコラム-Loto工法
エポコラム-Loto工法は,大口径改良体造成を目的として,
翼中吐出機構と水平・鉛直補助翼の開発し,
Ø1.6mから最大改良径2.5mの造成を可能としている。

②エポコラム-Taf工法
また,新たに開発したエポコラム-Taf工法は,
地盤中の残置既製杭や改良地盤等,従来工法では先行削孔等が必要な障害物が存在する場合に,一工程の改良施工を可能とした工法である。

残置既製杭の破砕・改良の同時施工では,
撤去工が不要となり経済的になる上、廃棄物の有効利用を図れ、
環境負荷を低減できる。

1級建築施工管理技士 二次検定の試験形式

1級建築施工管理技士
実地試験の形式はおおよそ決まっています。
以下にその内容を示します。

試験範囲

(問題1)【 経験記述 】
・合理化
・品質管理
・環境管理
・施工計画
のうちのいづれかについて、
貴方の経験にそくした記述及び考えを問われる

(問題2)【 一般記述 】
・災害別の防止対策
・仮設物ごとの災害防止対策
等の項目について、
貴方の経験にそくした記述及び考えを問われる

(問題3)【 く体工事 】
< 記述または3択 >
・地盤調査
・仮設工事
・土工事・山留め工事
・鉄筋工事
・型枠工事
・コンクリート工事
・鉄骨工事
・メーソンリー工事
・施工機械

(問題4)【 仕上げ工事 】
< 記述または3択 >
・防水工事
・シーリング工事
・張り石工事
・タイル工事
・屋根及び金属工事
・軽量鉄骨工事
・カーテンウォール・建具・ガラス工事
・塗装工事
・内装工事
・木工事
・ALCパネル工事
・押出成形セメント板工事
・改修工事

(問題5)【 施工管理法 】
〜工程表に関する問題
・バーチャート工程表の読み取り
・平成12年まではネットワーク工程表も出題
・平成9年までは品質管理として特性要因図「魚の骨」も出題

(問題6)【 法 規 】
・建設業法
・労働安全衛生法
・その他の法規
建築基準法/労働基準法/廃棄物の処理及び清掃に関する法律/騒音規制法など

以上が、おおよその出題範囲になっています。

問題1、2の記述部分の配点が高く、しかっり記述しなければならないとはいうものの、問題3以降は個々の点数は小さいですが、その減点が重なると大きく響き、かつ、学習するべき範囲が広いので手を抜くことはできません。正確に覚えていなければ点数にはなりませんので、漢字表記まで正確に覚えておく必要があります。

現場では人手不足などで遅くまで作業されている方も多いと思います。
学習する時間を確保するのが難しいでしょうが、スキマ時間などを見つけて、あるいは作成して、効率的に学習していきましょう。

1級建築施工管理技士 く体工事 地盤改良 コラム

第4章 地業工事 地盤改良工事 

———————————————-
◆◆ 地盤改良工事 ◆◆
———————————————-
主な地盤改良工事には深層地盤改良と浅層地盤改良がある。
深層地盤改良(柱状改良体)の柱状改良の事故の考察する。
設計ミスによるもの
 地盤改良したのに不同沈下した
 地盤補強しなくて不同沈下した
 地震で不同沈下した
 その他
対策:地盤調査はSS試験だけで済まさず
   必要に応じて別の試験方法も追加する。
 ※SS試験(スェーデン式サウンディング試験)
SS試験では
1mあたりの半回転数が150を超えると、信頼性が低くなる。
追加試験をするのが理想的ですが、
費用をそれほどかけずにSS試験の限界を補うことができる。
地形図、地質図、近隣のボーリングデータを参照し、
支持地盤の位置などを予測して、
SS試験の調査結果が妥当か判断する。
SS試験の調査報告書を見る際の注意点
□ 調査地の場所(大規模造成地の場合、別敷地のもののケースがある)
□ 地形・地質の種類・時代区分
□ 盛り土の有無・厚さ
□ 敷地履歴・造成経年
□ 元の地盤の傾斜レベル・方向
□ 擁壁の状態
□ 調査地周辺での異常の有無
□ 土質の安定性
□ 軟弱層の分布
□ 不同沈下の可能性
□ 調査員の資格証
 (住宅地盤品質協会又は地盤保証検査協会)
□ 調査測点 建物の四隅と真ん中の5カ所



★SS試験の結果だけで考察している報告書は信頼性が低い
★造成地や擁壁がある場合、SS試験の調査測点が適切な位置がどうかもチェックする
住宅の基礎設計に必要なのは「地耐力」
地耐力は
「支持力」と「沈下量」
から求める。
SS試験は支持力しか測定できないので、注意が必要です。
表面波探査法による測定
直径50㎝の面で測定するので理にかなっている。
擁壁や交通量の多い道路には適さない。
杭が必要と判定が出た場合は、SSやボーリングで
再調査をするほうが良い。
地盤トラブル ケース1
民間の瑕疵保証をついけていたが、
保証会社も補強工事会社も保証に応じなかったトラブル
建設中の施工したての基礎が台風に見舞われて沈んだケース
・瑕疵保証内容が完成後の瑕疵を保証するものだった。
・地盤調査結果の指示に従って補強方法を決めているので、
 施工ではなく地盤調査結果に責任がある
ということ
事故後に別の調査方法で再調査したら、
当初 3.5mの柱状改良摩擦杭の提案だったものが、
8mの鋼管杭が必要だと判明したとのこと。
地盤調査資料をしっかりと読み込んで、
設計されているいることが重要。
その時に施工者も交えて、
最適な施工方法が検討されれば
なおよいが、必ずしも同様のケースに
あてはまるとは限らないので、
注意が必要。


1級建築施工管理技士とは

1級建築施工管理技士とは何か?

どういう職種で、どういう能力が要求されていて、
どうゆう管理下におかれているか?

また、1級建築施工管理技士になるためには
どうゆう試験を合格しなければならないのか?

受験資格はどうなのか?

それは詳しくは
一般財団法人 建設業振興基金 のホームページ

施工管理技術検討とは
において詳しく見ることができます。

もう少し、かみくだいて具体的にどうか?
専門外からの見え方などを問う場合、
とウィキペディアを見てみます。

以下、ウィキペディアからの抜粋
———————————————–
施工管理技士とは
施工管理技士国家資格のうちの1つ。

国土交通省管轄。
建築施工管理技士の区分は1級、2級

建築士は
一級建築士、二級建築士及び木造建築士
(数字ではない漢数字)
国家試験は年1回実施
実施は一般財団法人 建設業振興基金による

【 概 要 】
建設業法第27条の2に基づき実施されている資格。
1級建築施工管理技士、2級建築施工管理技士
に大別される。

1級建築施工管理技士は、一般建設業、特定建設業の許可基準の一つである営業所ごとに置く専任の技術者、並びに建設工事の現場に置く主任技術者及び監理技術者の有資格者として認められており、大規模工事(超高層建築、大規模都市施設等)を扱う。

また公共性のある重要な5000万円以上の建築一式工事または2500万円以上の上記以外の工事では、これらの資格を有する主任技術者、監理技術者を専任で置く必要が生ずる。
公共工事に参加する建設業者を技術的、経営的に評価する経営事項審査の技術力評点において1級建築施工管理技士は全22業種中16業種で5点が配点される。
現代においては、一級建築士、1級建築施工管理技士のみが建築施工管理に関して、その工事規模の上限が存在しない。
一級建築士は、建築学全般を広く扱う資格だが近年では、設計分野に重点を置く資格体系となっている。

一方、1級建築施工管理技士は、施工過程における施工計画、行程管理、品質管理、安全管理に重点を置く

また建築分野は業種も数多く存在し、設計、施工管理それぞれの分野で人員が必要なため、ゼネコンなどにおいては、一般的に一級建築士は、設計監理のスペシャリスト、1級建築施工管理技士は、施工管理のスペシャリスト(建築エンジニア)として認識されている。

その為、監理技術者として業務が可能な職種に違いが有り、1級建築施工管理技士の方が多くなっている。

2級建築施工管理技士は建築、躯体、仕上げの3種類の資格に分かれ、建築に関する全ての分野で2級資格者となるためには、少なくとも3度の受験に合格する必要がある。}
1級は、その必要はない。それぞれの一般建設業、特定建設業の許可基準の一つである営業所ごとに置く専任の技術者並びに建設工事の現場に置く主任技術者及び監理技術者の有資格者として認められており、小規模工事を扱う。
1級、2級共に法令順守及び昨今求められる

高い要求品質という観点から建築施工における緻密な要求精度を確保し、施工計画、安全管理、品質管理、工程管理という時に相反する事項を達成しつつ、予定工期内に建築を完成させられる高度な技術的スキルが求められる。
また昨今の環境意識の高まりと共に3Rを遵守することも要求されるため建築全般について精通し技術的応用力ととも高い倫理観およびマネージメント力も求められる。
学士を持たなくても建築研究のため大学院に個別入学資格審査できる資格である。
【 種 類 】
1級建築施工管理技士
2級建築施工管理技士
・建築
・躯体
・仕上げ
●受験資格
一般財団法人 建設業振興基金のホームページの
申し込みについてを参照されたい

●試験内容
学科試験と実地試験がある。
1級は学科試験において
建築学
・環境工学
・各種構造
・構造力学
・施工共通
・躯体工事
・建築材料
・仕上げ工事
・施工管理法
・法規
がある。
実地試験においては
前年度と今年度の筆記試験の合格者
および一級建築士のみ受験可である施工管理法となる。
施工管理法とは実務経験における
建築全般の応用力が求められるという
試験の観点より全問記述式となる。

学科試験は例年6月、
実地試験は例年10月ごろに実施される。

建築は他の施工管理技士試験と比較し、
業種や管理項目が煩雑かつ多岐に渡る為、
複雑な設問が出題される傾向が強い試験である。

また出題傾向も毎年異なった問題が出題されている。

さらに昨今の一級建築士による耐震偽造事件など
の社会的事象を受け、
細部を突き詰めた設問が多くなる傾向がある。

実地試験合格によって1級建築施工管理技士として認定される。
1級合格後、
公共工事及び一定規模以上の民間工事において
監理技術者となる場合、
さらに監理技術者講習を受ける必要がある。
2級は学科試験においては
建築、躯体、仕上げのいずれかを選択し、
建築学と法規、
建築の場合は施工管理法、
躯体の場合は躯体施工管理法、
仕上げの場合は仕上げ施工管理者法、
実地においては
建築の場合は施工管理法、
躯体の場合は躯体施工管理法、
仕上げの場合は仕上げ施工管理者法がある。
●合格率は
CIC 日本建設情報センターのホームページの
施工管理技術士試験の合格率を参照されたい
以上、建築施工管理技術士という職種の
アウトラインはつかんでいただけたかと思います。
何を目指しているかは人によって違うと思いますが、
この試験を受験する人にとっては、
「この試験を受験して合格する」
という目的に関しては同じです。

この業界は働く者達は、
建築主のため、しいては社会の為に
よりよい建築物を造るという最終目的は同じです。

よき仲間として、ライバルとして、
この試験の合格を勝ち取り、
建設業を介して日本に貢献していきましょう。

1級建築施工管理技士 く体工事 鉄筋工事 品質管理

5章 鉄筋工事 配筋検査

鉄筋コンクリート造において
品質問題として発生しやすいものに
鉄筋工事がある。

鉄筋の種類の間違い、本数の間違い、かぶり厚さの不足
どれをとっても、

構造計算との不整合 → 構造耐力が確保できない
建築基準法違反などとなり
品質上重要な問題となる。

なので、何重にもチェックを行う必要がある。
まずは、鉄筋業者自身がチェックを行い、
次に、作業所がチェックを行い
これで問題がないという状態で、
建築主の立場で、工事監理者の検査が行われる。

工事監理者がチェックを行う場合においては、
普通は、全てがおさまっている状態である。

しかし、人間が行なうことなので、
間違いは発生する。

それらを解消した上で、特定の工程では
官庁検査がある。
①鉄筋工事 専門業者
②作業所
③工事監理者
場合によっては、建築主が別に依頼する
第三者がはいるケースがある。

[ 官庁による特定工程の検査 ]
その際のチェックポイントは以下の4点。
鉄筋の種類
継手、定着の方法
圧接、溶接継手の引張試験結果、UT試験結果
配筋検査
鉄筋の種類はミルシート(材料証明証)及び出荷証明書により確認する。
種類、使用箇所が設計図どおりのものであるか。
継手、定着の方法は、
打設するコンクリートの強度と鉄筋の種類、及び部位によってことなるので、
それぞれ整理しておく必要がある。(L1、L2等・・)
通常、柱や梁は圧接継手を行う場合が多い。
鉄筋等の試験は、
これもまずはミルシートで確認する。
材料の成分は規定のものであるか?
圧接継手を行う場合は、
圧接部の外観検査、超音波探傷(UT)試験、引張試験などの結果も合わせて確認する。
そのロット割り、及び本数は設計図書による。
通常は、1ロットあたり3本。
CB溶接継手などでA級継手になるものは,
引張り試験及びUT試験の両方が必要である。
その他、機械式継手を行う場合や、通常の溶接技量を超える場合の
溶接継手を行う場合などは施工前試験などが必要になるので注意する。
書類上の確認が終わって、ようやく、現場にての配筋検査になる。
配筋検査で主に確認する内容を以下に示す。
・鉄筋の種類・径・・・・圧延マーク、ノギス等
・加工寸法・・・・・・・スケールによる
・本数・・・・・・・・・目視
・組立精度・位置・間隔・スケール及び目視
・かぶり厚さ
・継手及び定着の位置・長さ
・鉄筋相互のあき
・スペーサー及びバーサポートの材質・配置、数量
・鉄筋の固定度
日本建築学会の
鉄筋コンクリート造配筋指針・同解説
は必携の書籍である。

配筋時の鉄筋の名称や標準的な配筋要領が不明な場合には
つねに見返して理解する必要がある。
参考までに
配筋検査の要点をまとめたので
活用されたし。

1級建築施工管理技士 く体工事 基礎工事

第4章 地業工事 杭工事

◆既成コンクリート杭

1)杭の運搬及び取扱い
①杭の運搬及び取扱い 積込み・荷降し 2点、1/5の箇所
②杭の建込み 杭上端部から 2mの位置を吊り点位置とする

2)打ち込み工法
①打撃工法
ディーゼルハンマ、ドロップハンマ(もんけん)
バイブロハンマ、油圧ハンマ

②プレボーリング併用打撃工法
オーガーによる掘削径
通常、粘性土の場合、 杭径 – 50mm

③杭の打込み
一群の場合 中心から外側へ
一本の打込みは中断しない

④杭の打止め
指定された深さで行う
支持層まで到達すること

3)埋込み工法
①プレボーリング工法(セメントミルク工法)
【 アースオーガーによる掘削の施工上の留意事項 】
・屈進速度が速すぎると、
先端の掘削ビットに過大な負担がかかり、
ビットが横に逃げたり、ロッドが曲がるなどして、
掘削孔の曲がりが生じやすくなる。
土質によって屈進速度を変える必要がある。
→ 硬い地盤ほどゆっくり掘削する。

・掘削中に孔壁の崩壊が生じるおそれがある場合は、
必要に応じて掘削液(安定液)を使用する。

・アースオーガーの引き上げに当たっては、
負圧によって地盤を緩めないように
ゆっくりと正回転で引き上げる。

・掘削土は、杭の高止まりが生じないように十分排出する。

【 杭の建て込みの施工上の留意事項 】
・掘削孔壁が崩壊することがないように、速やかに行う。
孔壁の崩壊は高止まりの原因となる。

・孔壁や杭体を損傷することのないよう、
鉛直に吊り下げた状態でゆっくり行う。

・建て込み後に杭が自沈するおそれのある場合は、
固定ち具などにより杭を保持し、
自沈しないように設置高さの位置で固定しておく。

②中掘り工法:
杭中空部にオーガー等を挿入し、杭先端地盤を掘削しながら、杭中空部から排土して杭を設置する工法。
直径 500mm以上に適する
杭先端にはフリクションカッターを取り付ける

4)杭の継手
①溶接継手または接続金具による無溶接継手とする。

②【 溶接継手の留意事項 】
・溶接は原則としてアーク溶接とする。

・継手部の開先の目違い量(杭心のずれ)は 2mm以下
許容できるルート間隔(杭間のすき間)は 4mm以下

・仮付け溶接は、点付け程度のものでなく、
必ず 40mm以上の長さとし、本溶接と同等のものとする。

・溶接の盛上げの不足があってはならないが、
余盛りは 3mm以下とし、不要な余盛りは行わない。

・杭の継手を手溶接とする場合、
JISに定める A-2H 程度の有資格者に行わせる。

・継杭における下杭の打残しは、
溶接作業に都合のよい高さ( 1m程度)とする。

・風速が 10m/s 以上ある場合、
適切な防風措置を講じて溶接作業を行う。

5)杭の施工精度
・杭頭の設計位置と水平方法のずれ
D/4( D は杭径)以内、かつ 100mm以内

・杭の傾斜
1/100 以内
※許容範囲を超えた場合には設計者に確認及び検討が必要である。

◆場所打ちコンクリート杭

1)施工
①コンクリートの調合

・一般に養生温度による強度補正は行わない。
mSn = 0
特記のない場合は、
構造体強度補正値の値は 3 N/mm2とする。

・調合は共仕によると
A種 c/w 60%、、スランプ 18㎝、粗骨材Max25mm、
単位セメント量 310 kg/m3(無水掘りの場合)
B種 c/w 55%、、スランプ 18㎝、粗骨材Max25mm、
単位セメント量 340 kg/m3(無水掘り以外)

②掘 削

・試験掘削に使用する安定液の品質試験は、
粘性、比重、ろ過水量、pH、砂分、塩分の全項目について行い、
以後は粘性及び比重について行う。

・杭の先端部は所定の支持地盤に確実に到達させ、
原則として、杭先端は支持地盤に 1m以上根入れさせる。

・掘削深さの確認は、
重錘(じゅうすい)と検測テープを用いて
杭底の2箇所以上で測定する。

③スライム処理(杭底処理)

・スライムとは、孔内の崩落土、泥水中の土砂等が沈殿したもの。
杭底部のスライムの介在は先端支持力を著しく低下させるので、
スライムの除去は確実に行わなければならない。

・スライムの処理には、
1次スライム処理(掘削完了直後に行う)と
2次スライム処理(コンクリート打設直前に行う)がある。

④鉄筋かごの組立て・吊込み(建込み)

・鉄筋かごの組立て(主筋と帯筋等)は、
原則として、0.8mm以上の鉄線で結束する。
ただし、帯筋の継手は片面 10d 以上のフレアーグルーブ溶接とし、
補強リングは、主筋に断面欠損を起こさないように堅固に溶接する。

・鉄筋のかぶり厚さは、
アースドリル及びリバース工法では 10~15㎝程度、
オールケーシング工法では 15㎝程度で設計されることが多い。

・鉄筋かごは、かぶり厚さを確保するために、
スペーサーを深さ方向に 3~5m間隔を目安として、
断面4箇所以上取り付ける。
設計図によるが、かご主筋への取り付けはさける。
がご主筋に設置する場合は、
アンダーカットに注意する。

・通常、鉄筋かごは掘削前に組み立てておく。
したがって、掘削後の検測で、
鉄筋かごの長さと掘削孔の深さに差がある場合がある。
掘削孔の深さが浅い場合には、最下段に鉄筋かごで長さを調整する。
これは杭は一般に上部の方が配筋量が多いので、
上部の配筋が不足しないように配慮したものである。

・鉄筋かごの建起こしと建込みは、
かごに有害な変形が生じないように行う。
また、建込みは、孔壁を崩壊しないように、
鉄筋かごを杭中心に合わせ鉛直性を保ちながら行う。

⑤コンクリートの打設等

・コンクリートの打ち込みは、泥水を巻き込むことがなく
良質なコンクリートに置換するために
原則としてトレミー菅を用いる。

・コンクリート打ち込み開始時には、
プランジャーをトレミー菅内の泥水(安定液)
の上に乗った形で設置して、
コンクリートと泥水等が混ざり合うのを防ぎ、
下部か泥水等を押し上げるようにコンクリートを打設する。

・トレミー菅及びケーシングチューブ(オールケーシング工法の場合)は、
これを引き抜きながらコンクリートの打ち込みを行う。
このとき、トレミー菅及びケーシングチューブの先端は、
コンクリートの中に常に 2m以上入ってるように保持する。

・杭底から押し上げられてきた不健全なコンクリートを、
余盛り部分に集めてコンクリート硬化後削り取る。

【 場所打ちコンクリート杭の余盛りの高さ 】
孔中に水が少ない場合 オールケーシング       50㎝以上
孔中に水が多い場合  アースドリル、リバース 80~100㎝程度

※上記余盛り高さを確保するため、スタンドパイプ取り外し後に、杭頭レベルが若干下がることを考慮してコンクリート打設完了時は少し高いめのレベルに設定しておく。

・杭築造完了後、
杭孔周囲の地盤の崩壊防止と転落防止のため
空掘り部分の埋戻しを行う。
埋戻しの時期は、コンクリート打込みの翌日以降、
杭頭のコンクリートが初期硬化をしてから行う。

2)施工後の処理
①施工精度
杭の水平方向のずれ 100mm以下、傾斜 1/100以下

・断面寸法は、設計断面以下にならないことを基準とする。
拡底径の場合は、拡底率が設計に関わる場合があるので注意する。

・鉛直精度や杭径は、通常、超音波孔壁測定結果から求める。

②杭頭の処理

余盛り部分や不良コンクリート部分をはつり取り、
健全なコンクリートを露出させる。

【 杭頭処理の施工上の留意事項 】
・コンクリート打込みから 14日程度経過した後、
所定のコンクリートの強度が得られてから行う。

・はつり作業に際しては、
杭本体へのひび割れや損傷防止に留意し、
平らにはつり取り、所定の高さにそろえる。

・設計図書に示された高さまで余盛り部分を除去しても、
杭頭コンクリートに不良部分が残る場合がある。
その場合には、不良部分を除去し、
コンクリートを打ち直さなければならない。

3)代表的な工法の概要

アースドリル工法(地盤ドリル工法)
表層ケーシングを建て込み、回転バケットで掘削する。

掘削完了後、スライムを除去する。

鉄筋かごを挿入し、トレミー菅をセットして
必要に応じて再度スライムを除去する。

コンクリートを打込む。

空掘り部分を埋め戻す。

・掘削孔壁の保護は、地盤表層部はケーシングにより、
ケーシング下端以深は、
ベントナイト、CMCを主体とする安定液により
孔壁にできるマッドケーキ(不透水膜)と水頭圧により保護する。

・安定液の粘性
安定液はベントナイト、CMC、分散剤等からなり、
分散剤は液の劣化を防ぎ、くり返し使用を可能にするもの。
安定液の配合は、必要な造壁性・比重のもので、
短時間で砂分を沈降させるため、
できるだけ低粘性・低比重のものとするのがよい。

・粘性はファンネル粘性で表されるが、
その数字が大きいほど粘性は高い。

・必要粘性とは、対象地盤に必要とする粘性をいい、
作液粘性とは、新しく作った安定液の粘性をいう。
アースドリル工法では、
安定液をくり返し使用すると粘性が小さくなることが多いので、
一般的に、作液粘性は必要粘性より大きくする。

・くり返し使用する場合の安定液は、
粘性、比重、砂分、ろ過水量、ケーキ、pHについて
管理しながら施工する。

・支持層の確認は、全杭についてバケット内の土砂を、
土質柱状図及び土質資料と対比し、併せて記録する。

・1次スライム処理:底ざらいバケットで処理する。

・1次処理に用いる底ざらいバケットは杭径より 10㎝小さいものを用いる

・1次処理に用いる底ざらいバケットの昇降は、
孔壁が崩壊することがないよに緩やかに行う。

・2次スライム処理:
水中ポンプ方式、エアーリフト方式等で処理する。

リバース工法(リバースサーキュレーション工法)

・スタンドパイプを建て込み、
その部分をハンマーグラブで掘削する。

その後は回転ビットで掘削し、
掘削完了後スライムを除去する。

鉄筋かごを挿入し、
トレミー菅をセットして必要に応じて再度スライム除去する。

コンクリートを打込む。

空掘り部分を埋め戻す。

・特殊な回転ビットを地上に設置したロータリーテーブルを通じて
緩やかに回転させて掘削し、
排土は水に混じった掘削孔底部の土砂を水と一緒に逆循環方式で吸い上げて行う。

・孔壁保護は、原則として水(土質によってはベントナイト溶液を使用することもある)を用い、静水圧を 0.02 N/mm2以上に保つことにより孔壁の崩壊を防ぐ工法なので、掘削に際しては地下水位を確認し、水頭差を 2.0m以上に保つようにする。スタンドパイプは、地表面部分の孔壁の崩壊を防ぐ役割を果たすとともに、その水頭差を確保するために掘削孔頭部にのみ貫入させるものである。また、スタンドパイプの径は、杭の孔径より、150〜200mm大きくする。

・支持層の確認は、全杭について、デリバリーホースの末端から掘削土砂を採取し、土質柱状図及び土質資料と対比して行い記録する。

・1次スライムの処理
回転ビットを孔底より若干引き上げて、空回しして吸い上げる。

・2次スライムの処理
トレミー菅とサクションポンプ等により処理する。

・スタンドパイプは、地表面の崩壊防止にも役立つので、コンクリートを所定の高さまで打設しトレミー菅を引き抜いた後に引き抜く。

オールケーシング工法(ベノト工法)

ケーシングチューブを圧入しながら、ハンマーグラブで掘削する。

掘削完了後、スライムを除去する。

鉄筋かごを挿入し、トレミー菅をセットして
必要に応じて再度スライムを除去する。

コンクリートを打込む。

空掘り部分をうめ戻す。

・掘削にあたって、
掘削孔全長にわたってケーシングチューブを使用するので、
孔壁の崩壊が少ない。

・孔壁の保護は、基本的にケーシングチューブを用いるが、
ボイリング、ヒービングが発生するおそれがある場合は、
孔内に水をはり防止する。

・支持層の確認は、
全杭についてハンマーグラブでつかみ上げた土砂を、
土質柱状図及び土質資料と対比し、併せて記録する。

・1次スライム処理:
孔内水がない場合やわずかな場合は、
ハンマーグラブで杭底処理する。
孔内水が多い場合は、
その後、沈殿バケット(スライムバケット)で処理する。

・2次スライム処理:
水中ポンプ方式、エアーリフト方式等で処理する。

・ケーシングチューブを急速に引き抜くと
コンクリートに泥水等を巻き込むことになるので、
十分に注意する。

・鉄筋かごがケーシングチューブに接触して浮き上がってしまう
鉄筋の供上がりが発生した場合は、
早期発見が大切で、
鉄筋頂部から供上がりチェック用の鉄線を
ケーシングチューブ天端まで伸ばしておき、
引き抜き初期にチェックを行う。

・供上がり防止策
・ケーシングチューブの内面をよく清掃する
・ケーシングチューブは、
変形・曲がりのないものを鉛直に建て込む
・スペーサーの形状、高さ及び位置に注意する。
・鉄筋かごを曲がりや変形のないように建て込む。