4章 地業工事 1節 一般事項

第4章 地業工事 


1節一般事項

4.1.1 適用範囲

地業工事では、基礎や基礎スラブを支えるために、それより下の地盤に設けた各種の杭、砂利、砂及び捨コンクリート地業、並びにこれらに関する試験を対象としている。

4.1.2 基本要求品質

(a) 杭地業工事で使用する材料については、工場等で製造される既製コンクリート杭や鋼杭、並びに工事ごとに異なる調合や品質・施工管理等が必要な場所打ちコンクリート杭等に大別される。前者については、材料の品質等が、杭の種類に応じて建築基準法に基づき指定又は認定されており、設計図書の指定に従って、それぞれの規定に適合する材料を使用したことが分かればよい。

また、場所打ちコンクリート杭に使用するコンクリートについては、施工条件に応じて設計図書で要求される品質(水セメント比、スランプ、単位セメント量等)を有するコンクリートを品質計画で明確にし、その材料(コンクリート)を使用したことが、6章のコンクリート工事に準じて分かるようにしておく。

なお、水セメント比及び単位セメント量は、現場で直接確認する適切な方法が確立されていないので、一般的にコンクリートの圧縮強度をその代用特性として用い、品質計画で定めた水セメント比及び単位セメント地を満たすコンクリートの強度で、間接的に確認している。

(b) 地業の平面位置、形状及び寸法は、地業の性能(上部構造物の支持能力)に直接影響を与える。例えば、独立基礎等では寸法の不足が即支持力の不足となる。また、個々の杭は必要な支持力を有する場合でも.平面位置や形状等が許容される誤差の限度を超えると.基礎に加わる上部構造物の荷重と地業の支持力に偏心が生じ、構造物に有害な応力が発生したり、不同沈下が生じたりする。

「標仕」では、地業工事における施工誤差は避けられないものとして、その限度を「有害な影響を与えないもの」と規定している。施工誤差の許容値は、基礎の形式や杭の種類・耐力、地下階の有無や構造形式、平面形状等により異なるため、管理基準や管理の方法を品質計画で明確にし、これに基づいて管理したことが分かるようにしておく。

(c) 一般に、打込杭(支持杭)の場合には、設計図内で杭の支持力が指定され、4.3.1 (e) 及び4.3.3(b)で述べているように直接支持力の確認ができる。しかし、埋込杭や場所打ちコンクリート杭では、支持力を直接確認しながら管理をすることはできない。

このため「標仕」では、適切な施工方法でかつ、適切な品質管理を行ったことが分かれば「所要の支持力を有するもの」と見なすこととし、すべての地業について載荷試験等により支持力の確認を要求しているのではない。

具体的には、適切な施工方法を定め、施工上の管理内容や管理基準及び管理記録の方法並びに管理基準を外れた場合の処置方法等を品質計画に記載させ、これに基づき管理させる。

なお、地盤調査結果と現地の状況等から判断して、設計図書の指定に疑問が生じた場合は、直ちに設計担当者と打ち合わせ、必要な場合には「標仕」1.1.8による協議を行う。

4.1.3 施工一般

(a) 材 料
材料の入手に当たってはその後の工期に影響しないよう、納期の確認が必要である。特に遠心力高強度プレストレストコンクリート杭のB種・C種並びにSC、PRC、ST杭のような特殊な場合は注意が必要である。

(b) 施工業者
打込み工法においては、平成9年版「建築工事共通仕様書」で引用されていた昭和46年建設省告示第111号は廃止されたが、打止め時に貫入量と打撃エネルギーから支持力の推定が行えるため、これを打止め管理に利用している。一方、既製杭の埋込み工法や場所打ちコンクリート杭ではこのような管理手段がなく、施工中に所定の耐力が確保されているかを数値で確認することは困難である。したがって、杭基礎としての信頼性は施工業者の技術力に依存せざるを得ない。施工業者の技術力については、工事実績、保有する施工機械の種類や能力、施工の管理体制等によって、十分検討することが必要である。

技術の進歩に対する施工水準の確保と施工の信頼性向上を図るため、既製コンクリート杭については(-社)コンクリートパイル建設技術協会、場所打ちコンクリート杭については(-社)日本基礎建設協会で、技術講習会を実施している。

(c) 工 法
(1) 地業工事は、一般に振動、騒音等が著しく、また、機械の転倒等の事故を起こす可能性があるので、1.3.7 に記述されているような配慮、参考資料の資料 1 に記述されている騒音規制法、振動規制法に対する処置、2.2.1(a)(iii)に記述されている事前の現状調査等が必要である。特に、作業地盤は施工機械が傾斜、転倒しないよう養生する。

また、酸欠、杭孔への転落等についても、防止対策をとる。

(2) 杭の上部には、地震時に水平せん断力や大きな曲げ応力が発生するので、十分注意して施工管理を行う必要がある。特に、セメントミルク工法では杭周固定液の逸液により、杭の周囲が軟弱な泥土となっている場合があるので注意する。

(3) 排土、廃液等は、産業廃菓物として規制を受ける場合があるので、産業廃棄物処理法等に従い適切に処理する。

(d) 杭の品質管理
杭の品質管理は、要求品質に応じて適切に行う必要がある。「国土交通省総合技術開発プロジェクト「建設事業の品質管理体系に関する技術開発」報告害 建築分野編」(平成13年3月 国土交通省建築研究所)に各工法ごとの「要求品質と品質管理方法」が報告されているので、その例(打込み工法、プレボーリング根固め工法アースドリル工法)を表4.1.1~3に示す。これ以外の既製コンクリート杭(プレボーリング拡大根固め工法、中掘り拡大根固め工法)、鋼管杭(打撃工法、中掘り工法、鋼管ソイルセメント杭工法、回転貫入杭工法)及び場所打ちコンクリート杭(リバース工法、オールケーシング工法)については、この報告古を参照されたい。

なお、工法の特徴や施工方法、具体的な管理値等は、本章3節以降の関連する部分を参照されたい。

(e) その他
(1) 地中障害物、埋設物及び文化財や学術上の資料となる出土品がある場合は、関係者と協議し適切に処置する。

(2) 施工中の領斜、変形、ひび割れ、異常沈下、掘削孔壁の崩壊等予想外の異状が生じるなど、「標仕」4.1.3(f)に定める場合は、直ちに関係者と協議し、適切な処置を受注者等に指示する。

表4.1.1 打込み工法の要求品質と品質管理方法
(「建設事業の品質管理体系に関する技術開発」報告書 建築分野編より)

表4.1.2 プレポーリング根固め工法の要求品質と品質管理方法
(「建設事業の品質管理体系に関する技術開発」報告書 建築分野編より)

表4.1.3 アースドリル工法の要求品質と品質管理方法
(「建設事業の品質管理体系に関する技術開発」報告書 建築分野編より)

4章 地業工事 2節 試験及び報告書

第4章 地業工事 


2節 試験及び報告書

4.2.1 一般事項

(a) 「標仕」4章2節では、試験杭、杭の載荷試験、地盤の載荷試験及び報告書について規定している。

(b) 試験は.原則として.監督職員の立会いを受けて行うこととしている。
なお、載荷試験には、(c)のような理由で設計担当者の立会いを求めるのがよい。

(c) 「標仕」4.2.1(c)では施工試験の結果によって「その後の施工の指示を受ける。」こととしている。「施工の指示」には、増し杭等設計変更の必要な場合もあるが、この場合は、工程管理上速やかに行う必要がある。

(d) 杭の施工に併せて行う管理試験については、3節から5節に示す。

4.2.2 試験杭

試験杭とは、本杭を施工する場合の各種管理基準値等を定めるための杭を想定している。打込み工法(「標仕」4.3.3(e))の試験杭は、杭の長さの決定や支持層の確認等のため本杭と別に計画する。試験杭の位置、本数及び寸法は、設計図書に特記される。試験後の杭体の強度に十分余裕があると予想される場合には、試験杭を本杭とすることができる。

セメントミルク工法(「標仕」4.3.4(e))、特定埋込杭工法(同4.3.5 (b))、鋼杭工法(同4.4.3及び4.4.4)及び場所打ち杭(同4.5.4(b))については、一般的には最初の1本目の本杭が試験杭とされる。試験杭の位置は、地盤や土質試験の結果から、全基礎杭を代表すると判断される位置に指定される。

試験杭の施工結果を基に、試験杭以外の本杭の施工における各種管理基準値等を定める。このため、試験杭の施工設備は、原則として、本杭に用いるものを使用する。

なお、杭の支持力の確認試験や水平載荷試験を行うための試験杭や反力杭等の特別な仕様が必要な「試験杭」は「標仕」4.2.2(a)の「特記」の想定外である。その場合は、設計担当者により別途仕様が定められ設計図書に特記される。

4.2.3 杭の載荷試験

杭の載荷試験は、「標仕」では、鉛直又は水平載荷試験としている。また、試験の方法は特記によるとしている。

地盤工学会基準「杭の鉛直載荷試験方法・同解説」には、単杭に対して鉛直方向に載荷するすべての載荷試験を対象にし、
「杭の押込み試験方法(JGS 1811)」
「杭の先端載荷試験方法(JGS 1812)」
「杭の引抜き試験方法(JGS 1813)」
「杭の鉛直交番載荷試験方法(JGS 1814)」
「杭の急速載荷試験方法(JGS 1815)」
「杭の衝撃載荷試験方法(JGS 1816)」
の6種類の基準が併記されている。

また、水平載荷試験に関しては地盤工学会基準「杭の水平載荷試験方法(JGS1831)」に基準化されている。

ここでは、地盤工学会基準の概要を紹介する。

(1) 鉛直載荷試験
6種類の基準を、載荷方法から、荷重の性質、加力方法、反力装置、載荷位置及び載荷方向で分類すると表4.2.1のとおりである。

表4.2.1 載荷方法による分類(杭の鉛直載荷試験方法・同解説より)

荷重の性質からは、静的載荷試験と動的載荷試験に大別される。静的載荷と動的載荷は、杭体並びに地盤の速度及び加速度に依存する抵抗が無視できる載荷か否かで区別できる。また、動的載荷において急速載荷と衝撃載荷は、杭体の波動を無視できるか否かで区別される。

この基準では、図4.2.1に示すように、載荷時間の長さ、具体的には載荷時間 t1の、縦波が杭体を一往復するのに要する時間 2L/cに対する比である相対載荷時間 Trの大きさで区分される。


図4.2.1 載荷時間の比較(杭の鉛直載荷試験方法・同解説より)

① 押込み試験方法
押込み試験方法は、杭頭部に軸方向押込み荷重を加える試験である。この試験方法は、実際の杭と同じ荷重条件で行うため鉛直支持力特性の評価の信頼性が高いが、反力装置に載荷梁等を使用した反力抵抗体が必要なため、ある程度の費用と工期を要する。

載荷に用いる試験装置は、加力装置、反力装置及び計測装置で構成される。図 4.2.2に一般的な載荷試験装置例として反力杭方式の試験装置を示す。


図4.2.2 反力杭を使用した場合の押込み試験装置例
(杭の鉛直載荷試験方法・同解説より)

② 先端載荷試験方法
先端載荷試験方法は、図4.2.3のように、杭体の先端付近に取り付けたジャッキによって静的な荷重を加える試験である。この試験方法では、押込み試験方法のような杭頭部の反力装置は用いずに. ジャッキの上下に生ずる抵抗力を互いに反力として載荷する。ジャッキの上方に生ずる抵抗力は.杭を押し上げるのに必要な抵抗(押上げ抵抗)であり、杭の周面抵抗力に杭の自重が加わったものとなる。ジャッキの下方に生じる抵抗力は、杭の先端抵抗力が主であり、これにジャッキより下方の部分の周面抵抗力が加わることになる。


図4.2.3 先端載荷試験の装置(杭の鉛直載荷試験方法・同解説より)

③ 引抜き試験方法
引抜き試験方法は、杭頭に静的な引抜き荷重を加える試験である。

試験装置は、押込み試験と同様に、加力装置、反力装置、計測装置で構成される。引抜き試験の反力抵抗体は、反力杭が一般的であるが反力板も用いられている。コンクリート系の試験杭では、試験杭の杭体に引張り応力が作用するため、杭体の引張り強度について注意を要する。

また、各層の周面抵抗力特性を得るために杭体の軸方向力を測定する際には、杭体のひび割れの影響についても留意しなければならない。

④ 鉛直交番載荷試験方法
鉛直交番載荷試験方法は、杭に押込み及び引抜きの軸方向鉛直交番荷重を加える試験である。地震時における構造物のロッキング動等によって杭基礎に作用する変動軸力は、鉛直交番荷重として杭頭に作用するが、従来の設計では押込み荷重及び引抜き荷重に対する抵抗力を押込み試験及び引抜き試験によってそれぞれ別々に評価してきた。しかし、近年行われるようになってきた上部構造と杭基礎との一体解析では、鉛直交番荷重に対する杭の挙動を一連の挙動として評価する必要が生じてきた。鉛直交番載荷試験は、これまで研究的に行われてきた事例はあるものの、多くの試験が実施されてきたとはいえない。しかし、兵庫県南部地震以降、常時から大地震時に至るまでの杭基礎の挙動を正確に設計に反映させる必要性が高まっており、鉛直交番載荷試験によって杭挙動を評価する機会が今後増加するものと考えられる。したがって、鉛直載荷試験方法の一つとして「杭の鉛直交番載荷試験方法(JGS 1814)」が制定され、試験の基準化を図ることとされている(図4.2.4参照)。


図4.2.4 鉛直交番載荷試験の載荷サイクル(杭の鉛直載荷試験方法・同解説より)

⑤ 急速載荷試験方法
急速載荷試験方法は、杭頭に動的な荷重を加える載荷試験の一つである。荷重の性質として油圧ジャッキ等により静的な荷重を加える押込み試験とハンマー等で衝撃荷重を加える衝撃載荷試験の中間的な位置付けにあり、基準の中では急速載荷を「杭体の波動現象は無視できるが、速度および加速度に依存する杭体と地盤の抵抗は無視することができない載荷時間を持つ載荷」と定義している。具体的には、相対載荷時間 Tr が 5 ≦ Tr < 500の範囲の載荷試験である(図4.2.5参照)。


図4.2.5 反力装置を使用しない加力装置(杭の鉛直載荷試験方法・同解説より)

⑥ 衝撃載荷試験方法
杭の衝撃載荷試験方法は、杭頭に動的な荷重を加える載荷試験の一つである。一般に、杭頭部にひずみ計及び加速度計を取り付け、ハンマー等による杭打撃時に発生するひずみ波形及び加速度波形を測定し、波動理論に基づいて解析を行い、杭の鉛直支持力特性を評価する試験方法である(図4.2.6参照)。

載荷試験においては、載荷時間が、波動が杭長分を伝播する時間に対して短くなるほど、波動の影響が大きくなる。衝撃載荷試験は、載荷時間が 0.01〜0.02秒程度であるため、波動現象を伴う試験であり、試験結果の解析は一次元波動理論に基づく必要がある。


図4.2.6 衝撃載荷試験方法の例(杭の鉛直載荷試験方法・同解説より)

(2) 水平載荷試験
杭の水平載荷試験方法は、静的載荷による杭の水平抵抗特性に関する資料を得ること、また、既に定められた杭の水平地盤反力係数等の設計値の妥当性を確認することを目的とする(図4.2.7参照)。

載荷方法は、載荷パターン及び載荷方式により分類され、対象とする構造物の種類及び試験の目的を考慮して決定する。

載荷パターンには、一方向載荷と正負交番載荷があり、いずれかを選択する。また、単サイクルと多サイクルがあり、いずれかを選択する。後者の場合は、試験の目的に応じてサイクル数を決定する。

載荷方式には、段階載荷方式と連続載荷方式があり、いずれかの方式を選択する。前者の場合は荷重(変位)段階数、各荷一重(変位)段階における荷重(変位)保持時間を、後者の場合は載荷速度を試験の目的に応じて決定する。


図4.2.7 水平載荷試験の装置例(杭の水平載荷試験方法・同解説より)

4.2.4 地盤の載荷試験
(a) 一般事項
地盤の載荷試験は、「標仕」では平板載荷試験としている。地盤の平板載荷試験は、地盤工学会基準JGS1521-2003(地盤の平板載荷試験方法)による。

(b) 平板載荷試験
(1) 試験地盤
(i) 試験地盤は、根切りのときスコップ等で荒らしたり踏み付けたり、あるいは水で埋まらないよう試験地盤の少し上で止めておき、載荷板を設置するときに、試験が自然状態で行えるようにする。

(ii) 試験孔は、一般に載荷板の5倍程度あればよいといわれているが、地盤工学会基準JGS 1521-2003によると、試験地盤面は、載荷板の中心から1.0m以上の範囲を水平に整地すると定められている(図4.2.8参照)。


図4.2.8 平板載荷試験における根切り幅と載荷板との関係を示した例

(2) 載荷板
(i) 載荷板は、直径30cm以上の円形とし、厚さ25mm以上の鋼板又は同等以上の剛性のある板を用いる。

(ii) 設置は、試験孔のほぼ中央とし、反力装置の中心の鉛直下を水平器等を用い平らに仕上げ設置する。また、地盤となじみの悪いときは薄く砂をまくか、せっこうをまいて行う。

なお、試験地盤が常水面以下の場合は、試験地盤以下に水位を下げないように注意し排水する。また、水が多く排水により地盤が緩むおそれのある場合は、設計担当者と打ち合わせる。

(3) 養 生
試験装置の上は、テント等で覆い直射日光及び降雨を避ける。また、雨水が試験孔に流入しないようにする。

(4) 最大荷重
最大荷重は設計図書の指定によるが、推定した地盤の極限支持力以上、又は設計荷重に安全率を乗じた値以上とする。

(5) 試験装置
(i) 載荷台の反力梁は、中心を載荷板の中心と一致させ、水平に設置して、変形、傾斜、転倒がないようにする。また、載荷物は偏心しないよう注意する(図4.2.9 参照)。

(ii) 加圧方法は、計画最大荷重以上の加圧能力と、変形に追随できる十分なストロークをもつジャッキによる。


図4.2.9 平板載荷試験の装置の例

(6) 計測装置
(i) 載荷荷重の計測は、荷重計(環状ばね型力計又はロードセル)を用いる。計器は試験荷重に見合ったもので、検定後の経過期間が短いものがよい。

(ii) 変位の計測は、読み精度 1/100mm、ストロークは30mm以上のダイヤルゲージ又はこれに準ずる性能の変位計を用い、セットは図4.2.10のようにする。


図4.2.10 平板載荷試験における沈下量の測定方法

(7) 試験方法
(i) 国土交通省大臣官房官庁営繕部「敷地調査共通仕様瞥」4.7.4(4)では、載荷方法は、荷重制御による段階式載荷又は段階式繰返し載荷とし、適用は特記により、特記がなければ、段階式載荷とするように定められている。

(ii) 地盤工学会基準JGS 1521-2003によると、載荷重は、計画最大荷重を 5〜 8 段階ずつ等分に載荷し、荷重の保持時間は30分程度の一定とするよう定められている。

(iii) 沈下量の測定時間は地盤工学会基準 JGS 1521-2003によると、各荷重段階において所定の荷重に達したのち、原則として表4.2.2のように定められている。

表4.2.2 沈下量測定時間

(8) 試験結果の表示
試験結果の表示の例を,図4.2.11に示す。


図4.2.11 載荷試験結果の例

(9) 報告書
地盤の載荷試験の報告書は、次の事項を記載する必要がある。

① 地盤工学会基準JGS 1521-2003と部分的に異なる方法を用いた場合には、その方法
② 試験方法
③ 試験結果の図及び表
④ 地盤反力係数
⑤ 極限支持力
⑥ 試験地盤の観察結果と地下水の状況
⑦ その他特記すべき事項

4.2.5 報告書等
地業工事の報告書の目的及び記載事項は次のとおりである。

(1) 目 的
(i) 施工記録を報告することにより施工状況を記録に残す。
(ii) 予期しない状況が生じた場合等の対策を立てる場合の参考資料とする。
(iii) 上部構造に不同沈下等の問題点が生じたときの原因究明資料とする。
(iv) 将来の近隣での建設の参考資料とする。

(2) 全般的な報告書の記載事項
(i) 工事概要
(ii) 杭材料(杭の種類、材質、形状、寸法、コンクリート強度等)
(iii) 施工機械の仕様概要
(iv) 工法の概要
(v) 実施工程表
(vi) 工事写真
(ⅶ) 試験杭の施工記録及び地業工事に伴う試験結果の記録
(ⅷ) 本杭の施工記録
(ix) 試験杭等において採取した土質資料

4章 地業工事 3節 既製コンクリート杭

第4章 地業工事 


3節 既製コンクリート杭地業

4.3.1 適用範囲

(a) この節は、打込み工法セメントミルク工法及び特定埋込杭工法による既製コンクリート杭地業に適用する。

なお、杭の施工法の分類については、JIS A 7201(遠心カコンクリートくいの施工標準)に準ずる(図4.3.3参照)。

(b) 打込み工法の作業の流れを図4.3.1に、セメントミルク工法の作業の流れを図4.3.2 に示す。

(c) 施工計画書の記載事項は、おおむね次のとおりである。

なお、赤文字を考慮しながら品質計画を検討する。

① 工程表(施工機械及び杭の搬入時期、各ブロックごとの試験杭と本杭打込みの開始及び完了の時期等)
② 杭の製造業者名
③ 施工業者名及び作業の管理組織
④ 杭の種類、規格、寸法及び使用箇所(鋼杭の場合は、防錆処置を含む)
⑤ 材料の受入れ検査の方法及び記録
⑥ 地中埋設物・障害物の調査、移設、防護、撤去等の計画
⑦ 施工機械の仕様の概要及び性能
⑧ 施工法
⑨ プレボーリングを併用する場合はその深さ
⑩ セメントミルク工法の場合は安定液、根固め液等の調合計画及び管理方法
⑪ 杭配置図(平面図及び断面図:土質柱状図)、試験杭の位置及び杭の施工順序
⑫ 継手の工法(溶接機の種類と溶接技能者の資格を含む)
⑬ 長尺物の搬入経路
⑭ 杭支持力の確認方法(算定式、所要最終貫入量等)
⑮ 支持地盤の確認方法(地盤資料と掘削深さ、電流値との対照等)
⑯ 杭頭の処理方法(切断方法鉄筋の処理方法等)
⑰ 安全対策(施工機械の転倒防止と杭孔への転落防止等)
⑱ 公害対策(騒音、振動、油滴飛散防止策並びに掘削液の廃液処理方法等)
⑲ 施工結果報告書内容
⑳ 作業のフロー、管理の項目・水準・方法、品質管理体制・管理責任者、品質記緑文章の書式とその管理方法等

図4.3.1 打込み工法(打撃工法)の作業の流れ

図4.3.2 セメントミルク工法の作業の流れ

(d) 杭施工法の概要
(1) 施工の一般事項
既製コンクリート杭の施工に当たっては、地盤状況、現場状況、設計支持力等を考慮して、杭を予定深度まで正しく、かつ、安全に設置できる工法及び施工機械とする。

(2) 杭施工法の分類
杭の施工法の分類を図4.3.3に、杭の施工法の実績推移を図4.3.4に示す。
なお、(  )内は「標仕」の名称を示す。


図4.3.3 杭の施工法の分類(JIS A 7201 : 2009)


図4.3.4 杭の施工法の実績推移((-社)コンクリートパイル建設技術協会のデータによる)

① 打込み工法(図4.3.5及び6参照)
一般に杭径 600mm以下の施工に用いられる。地盤を緩めることがなく耐力は期待できるが、ハンマーを使用するため騒音、振動が大きく、市街地では問題が多い。このための対策として、油圧パイルハンマーやドロップハンマーによるプレボーリング併用打撃工法等が用いられている。

この工法は、アースオーガーで一定深度まで掘削したのち、杭を建込み打撃する工法である。中・小径で硬い中間層を抜く場合及び騒音振動を軽減し、杭の貫入を容易にする場合等に使用される。

通常、粘性土の場合のオーガーの掘削径は、杭径-50mm程度である。

なお、杭径が700mm以上の杭の施工に当たっては.施工実績が少ないため.特に注意が必要である。


図4.3.5 パイルハンマー打撃工法


図4.3.6 プレボーリング併用打撃工法

② プレボーリングによる埋込み工法(図4.3.7参照)
プレボーリングによる埋込み工法は、アースオーガーで掘削した孔に杭を設置する工法であり、セメントミルク工法と称する一般工法、最終的に打撃をする方法及び先端を拡大根固めした特定埋込杭工法がある。

杭の設置方法は、自重による設置を基本とし、圧入、軽打、回転等を併用する場合もある。掘削には地盤や工法によって水や安定液が使用されることがある。

セメントミルク工法は、アースオーガーによってあらかじめ掘削された縦孔に既製杭を建込むものである。掘削中は孔壁の崩壊を防止するために安定液をオーガー先端から噴出し、所定の深度に達したのち、根固め液に切り換え、所定量を注入完了後、杭周固定液を注入しながらアースオーガーを引き上げる。その後、杭を掘削孔内に建込む工法である。

この施工法は、国土交通省住宅局建築指導課監修「埋込み杭施工指針・同解説」に準じて施工するものである。

なお、このセメントミルク工法で、通常用いられている杭径は 300~600mm、施工深度は30m程度である。

また、特定埋込杭工法の中のプレボーリング工法については、種類が多いのでそれぞれの適用範囲を確認し、各工法に定められた条件に従って施工する。


図4.3.7 プレボーリングによる埋込み工法(セメントミルク工法の場合)

③中掘りによる埋込み工法(図4.3.8参照)
杭中空部にアースオーガー等を挿入し、杭先端地盤を掘削しながら、杭中空部から排土し、杭を設置する工法であり,比較的杭径の大きなもの(一般的にはφ 500mm以上の杭)の施工に適している。

杭の設置や排土を促進するため、圧縮空気又は水をオーガーヘッド先端から噴出させ、施工機械の自重を利用した圧入又はドロップハンマーによる軽打等を併用している場合が多い。

掘削機には、アースオーガー、オーガーバケット等が使用される。また、杭に作用する周面摩擦抵抗を低減させ、杭の沈設を容易にするために、先端にはフリクションカッターを取り付けるのが一般的である。

支持力発現方法としては、所定の深度に達したのち、杭に打撃を加える方法と杭先端部を根固めする方法がある。

杭に打撃を加える方法には、国土交通省住宅局建築指導課監修「中掘り打撃工法設計・施工指針」に準じて施工するものである。この工法の先端支持カ算定式は打込み工法と同じ取扱いである。

根固めする方法(図4.3.8(イ))には、杭先端部を根固めする方法と拡大根固めする方法とがある。拡大根固めする方法には、オーガーの先端に装備された拡大ヘッドによる方法(図4.3.8(ロ))、オーガーヘッド又はロッドから高圧又は低圧で根固め液を噴射する方法(図4.3.8(ハ))と、これらを併用し築造する方法があり、特定埋込杭工法となっている。これらの施工に当たっては、各工法に定められた条件に従って行うものとする。


図4.3.8 中掘りによる埋込み工法

④回転による埋込み工法(回転根固め工法)(図4.3.9 参照)
回転圧入による埋込み工法は、杭先端金物により掘削を行い、杭体に回転力を与えながら圧入し、杭を所定の位置に設置する工法である。回転圧入時は、水等を先端部から噴出して補助するものもある。

杭の支持力発現方法は、根固めによる方法が一般的である。


図4.3.9 回転による埋込み工法(回転根固め工法)

(e) 支持力の算定
杭の許容支持力は、地盤の許容支持力と杭体の許容耐力のうちいずれか小さいものとする。

基礎杭の許容支持力を定める方法は、その種類に応じて「地盤の許容応力度及び基礎ぐいの許容支持力を求めるための地盤調査の方法並びにその結果に基づき地盤の許容応力度及び基礎ぐいの許容支持力を定める方法等を定める件」(平成13年7月2日 国土交通省告示第1113号)(以下、この節では「告示第1113号」という。)に定められている( 24.1.9参照)。この内、一般的には次のものがある。

(i) 載荷試験による極限支持力(Ru)により、地盤の長期許容支持力(Ra)を定めるもの

(ii) 基礎杭先端付近の地盤の標準貫入試験の平均 N 値から基礎杭の先端の地盤の許容応力度( qp)を定めたもの

① 打込杭

② セメントミルク工法による埋込杭

(iii) 地盤の許容応力度及び基礎杭の許容支持力を求めるための方法として、杭打ち試験が挙げられている。ただし、告示第1113号では、具体的な算定式等については示されていない。

(iv) 特定埋込杭工法の場合は、各工法に定められた算定式とする。

4.3.2 材 料

(a) 杭の種類
一般的に用いられている既製コンクリート杭の種類を図4.3.10に示す。

図4.3.10 主な既製コンクリート杭の種類

PHC杭は、コンクリート設計基準強度が80 N/mm2以上で、形状的には全長にわたり同一断面の杭(ストレート杭という。)であるが、端部が拡大された杭(ST杭という。)や、全長にわたり等間隔で突起部が付いた杭(節杭という。)もある。これらの杭の本体部は本体部径が等しいPHC杭と同じ性能を有するので、分類上はPHC杭に含まれる。

また、最近では、コンクリート設計基準強度が100 N/mm2以上の杭や肉匝の厚い杭のほか、部分的に特殊な形状のものも開発されており、これらも分類上はPHC杭やSC杭となる。

PRC杭(ストレート杭)にも同様にPRC-ST杭やPRC-節杭がある。

これらの杭の大部分は、JIS I 類規格品又は性能評価機関により、告示第1113号に定める品質を満足する内容の(任意)評定を取得しているものである。

(b) 杭の製造工程
各既製コンクリート杭(略称でPHC杭、SC杭、PRC杭、ST杭及び節杭)の製造工程の例を、図4.3.11に示す。

なお、PRC杭、ST杭及び節杭の製造工程はPHC杭の場合と同じである。

図4.3.11 各既製コンクリート杭の製造工程の例

(c) 杭材料の品質
(1) 既製コンクリート杭については、告示第1113号第8で材料の許容応力度が定められているので、その抜粋を次に示す。

地盤の許容応力度及び基礎ぐいの許容支持力を求めるための地盤調査の方法並びにその結果に基づき地盤の許容応力度及び基礎ぐいの許容支持力を定める方法等を定める件

(平成13年7月2日 国土交通省告示第1113号 最終改正平成19年9月27日)建築基準法施行令(昭和25年政令第338号)第93条の規定に基づき、地盤の許容応力度及び基礎ぐいの許容支持力を求めるための地盤調査の方法を第1に、その結果に基づき地盤の許容応力度及び基礎ぐいの許容支持力を定める方法を第2から第6に定め、並びに同令第94条の規定に基づき、地盤アンカーの引抜き方向の許容応力度を第7に、くい体又は地盤アンカ一体に用いる材料の許容応力度を第8に定める。第8 くい体又は地盤アンカ一体に用いる材料の許容応力度は、次に掲げるところによる。

二 遠心力鉄筋コンクリートくい及び振動詰め鉄筋コンクリートくいに用いるコンクリートの許容応力度は、次の表(省略)の数値によらなければならない。この場合において、設計基準強度は40N/mm2以上としなければならない。

三 外殻鋼管付きコンクリートくいに用いるコンクリートの圧縮の許容応力度は、次の表(省略)の数値にらよらなければならない。この場合において、設計基準強度は 80N/m2以上としなければならない。

四 プレストレストコンクリートくいに用いるコンクリートの許容応力度は、次の表(省略)の数値によらなければならない。この場合において、設計基準強度は50N/mm2以上としなければならない。

五 遠心力高強度プレストレストコンクリートくい(JIS A5373(プレキャストプレストレストコンクリート製品)- 2004 附属書5 プレストレストコンクリートくいに適合するものをいう。)に用いるコンクリートの許容応力度は、次の表(省略)の数値によらなければならない。この場合において、設計基準強度は80N/mm2以上としなければならない。

六 前各号の規定にかかわらず、くい体の構造方法及び施工方法並びに当該くい体に用いるコンクリートの許容応力度の種類ごとに応じて行われたくい体を用いた試験により構造耐力上支障がないと認められる場合にあっては、当該くい体のコンクリートの許容応力度の数値を当該試験結果により求めた許容応力度の数値とすることができる。

(2) 代表的な杭材料の品質の例を表4.3.1に示す。これ以外の杭は、告示第1113号第8第六号の規定により認められた許容応力度の数値とすることができる。

表4.3.1 杭材料の品質の例

(3) 代表的な遠心力高強度プレストレストコンクリート杭〈PHC杭〉には、JIS A 5373(プレキャストプレストレストコンクリート製品)附属書 E による製品規格(推奨仕様 E-1 )がある。JIS A 5373による単体長さは、4~15m(ただし、φ300及びφ350のA種は 4~13m)である。

杭体の曲げ強度を表4.3.2に示す。

表4.3.2 遠心力高強度プレストレストコンクリート杭〈PHC杭〉の曲げ強度
(JIS A 5373 : 2010 推奨仕様E-1)

また、ストレート杭のほか、拡径断面を有する杭(ST杭)や節部付きの杭(節杭)等がある。

(i) 拡径断面を有する遠心力高強度プレストレストコンクリート杭〈ST杭〉は、杭の先端部を太径にした拡底PHC杭で、大きな地盤支持力が得られるもので ある。拡径部に溝が付いた杭等もある。また、拡径部を下端ではなく、上方側で用い、その上方に拡径部と同径の杭を接続する使用方法(拡頭タイプ)もある。

(ii) 節部付き遠心力高強度プレストレストコンクリート杭〈節杭〉は、杭本体部を約1m間隔で節部としたPHC杭で、大きな周面摩擦力が得られるものである。一部にのみ節部を有する杭もある。節杭にも拡頭タイプがある。

(4) 外殻鋼管付コンクリート杭〈SC杭〉は、大きな水平力が作用する場合に使用するために開発された杭で、鋼管(材質STK400、STK490、SKK400、SKK490、SS400、SM400ABC、SM490ABC、SN400ABC、SN490ABC、材厚 4.5~25mm)に膨張性コンクリートを遠心力で張り付かせて一体化させた複合構造であり、一般にPHC杭の上杭として使用される。最近では、不等厚鋼管を用いた製品もある。

(5) プレストレスト鉄筋コンクリート杭〈PRC杭〉は同様に水平力に抵抗するために開発されたPHC杭とRC杭の合成されたものであり、軸鉄筋としてPC鋼材のほかに鉄筋コンクリート用異形棒鋼 D10~D35を配置している。また、ストレート杭のほか、拡径断面を有する杭(ST杭)や節部付きの杭(節杭)等がある。(3)(i)及び(ii)参照。

(6) 杭先端部
杭先端部の形状は図4.3.12が標準で、土質及び工法に応じて適切なものを選定する。

一般に、打込み工法やセメントミルク工法では、平たん又は凹形の閉塞形が多く用いられ、中掘り工法や特定埋込杭工法では開放形が用いられている。最近では、大径杭や長尺杭のセメントミルク工法では、開放形が用いられている。特定埋込杭工法では、開放形の先端部に回転押込み補助用の金具を取り付けているものもある。

これらの先端部に、更に、地層や工法に適した先端金具等を取り付けて施工することが多い。

なお、杭先端部と地盤の成層状態との関係を表4.3.3に示す。


図4.3.12 杭先端部の形状

表4.3.3 杭先端部と地盤の成層状態との関係

(7) 既製コンクリート杭関係のJIS(JIS A 5372及びJIS A 5373)

(i) JIS A 5372(プレキャスト鉄筋コンクリート製品)及びJIS A 5373(プレキャ ストプレストレストコンクリート製品)は、性能規定化を目指した2004年の改正で「本体規格」-「附属書」-「推奨仕様」という形で構成され、以前の個別製品ごとの仕様規格は推奨仕様として規定された。また、これらJISでは、製品を I類、 II類に区分しており、その定義は次のとおりである。

I 類:製品の性能を満足することが、実績によって確認された仕様に基づいて製造される製品で、附属書に推奨仕様が示されているもの。

Ⅱ 類:受渡当事者間の協議によって、性能及び仕様を定めて製造される製品。なお、受渡当事者間とは、製造者と工事請負人である購入者ではなく、製造者と工事の発注者又は自ら工事を行うものをいう。

(ii) 従来は、JIS A 5373の I類のPHC杭が主流であったが、近年では、性能設計思想により多種多様の杭が用いられるようになってきている。

(iii) 現在、I 類規格品のあるものは、RC杭、PHC杭、PHC-ST杭及びPHC-節杭のみである。SC杭及びPRC杭はJISに名称はあるものの推奨仕様がないので、 JIS規格品(Ⅱ類)としての扱いとなっているため、告示第1113号による指定性能評価機関の評定品が使用されている。コンクリート設計基準強度が 100N/mm2以上のものも同様である。

4.3.3 打込み工法

(a) 打込み工法は、杭の支持力を得るために、最終工程に打撃を行うものと「標仕」では規定している。この工法は、施工の打込み時において杭の最終貫入量が測定され、推定支持力の管理基準値が定められている工法を示しており、打撃工法、プレボーリング打撃工法、中掘り打撃工法等がある。杭の取扱い及び工法はJIS A 7201(遠心カコンクリートくいの施工標準)による。

(b) 試験杭
(1) 打撃工法における試験杭の目的は、杭の推定支持力、土質状態、杭の長さ、施工時間、施工機械の適否等の確認である。本杭施工の前に行う杭打ち試験により適切な施工方法等の検討を行う。

また、杭の設計支持力は、特記により定められている。試験杭の杭打ち試験において、打込み深さ、最終貫入量等の管理基準値を確認し定めることが必要である。

(2) 試験に使用する杭は、原則として設計図書に示された諸元・材質のものを使用するが試験杭の長さは、支持層の位置が推定より深いこともあるので、本杭より2m程度長いものを用いるのが望ましい。

(3) 試験杭は、4.2.2で述べた理由で本杭の施工機械と同一機種で行うことが原則である。

(4) 調査項目及び調査方法は、打撃工法を例として次に示す。
(i) 打込み途中
杭に図4.3.13のように何m貫入したか分かるように印を付けておき、原則として、0.5~1.0mごとに次の項目について記録する。

1) 打撃回数   [ 回/m ]
2) 全打撃回数  [ 回 ]
3) 全打込み長さ [ m ]
4) 打込み所要時間[ 時分 ]

(ii) 打止まり
最終10回以上の打撃による平均値として
1) ハンマーの落下高さ[ m ]
2) 最終貫入量    [ mm ]
3) リバウンド量   [ mm ]

(iii) 支持層の確認
貫入量の減少と柱状図との比較により支持層の確認を行い、最終貫入量を測定する。

最終貫入量及びリバウンド量の測定は、図4.3.14に示すようにセクションペーパーを杭に張り付けておき、水平においたガイド材に沿って鉛筆を横に移動させていくと、図4.3.15のように杭の動きが記録される。


図4.3.13


図4.3.14 測定方法


図4.3.15 貫入量の記録

(5) 推定支持力の算定方法は特記によるとされているが、一般的には次の方法が用いられている(JIS A 7201より)。

( ⅰ )打込み杭の推定支持力

(ii) やっとこを使用した場合
やっとこを使用した場合には、算定値を0.8倍程度に低減しているが、地盤性状や杭打ち機(やっとこの構造)等によりその低減率は異なるので、やっとこを使用した場合と使用しない場合との値を実測して低減率を決めることが望ましい。

(c) 打込み工法に用いるハンマーの種類
(1) 各ハンマーの長所短所の比較を表4.3.4に示す。特に打撃工法による杭打ち施工は、大きな騒音・振動を発生するので、選定に当たっては、工事現場周辺の環境の保全に注意し、騒音・振動対策を十分に実施しなければならない。図4.3.16及び17に基礎工事用機械の騒音レベル、振動レベルの参考値を示す。

表4.3.4 各ハンマー長所短所


図4.3.16 基礎工事用機械の騒音レベル


図4.3.17 基礎工事用機械の振動レベル

(2) ディーゼルパイルハンマー
ディーゼルエンジンの原理によるハンマーである。ラム(上下動するピストン部分)の落下高さが2mを超えるような能力の小さいハンマーでは杭頭を破壊するおそれがあるので、落下高さが2m以下で杭を打ち込める能力のあるものとする。最近では、施工実績はほとんどない。

ラム質量と杭径の関係は、おおむね表4.3.5のとおりである。

表4.3.5 ラム質量と杭径の関係

(3) 油圧ハンマー
建設省技術評価制度(1983年)によって評価・普及し、油圧によってラムを作動落下させる杭打ち用ハンマーで、ディーゼルパイルハンマーに比べて大幅に騒音を低減する(15~20ホン)とともに油煙の飛散が全くない。ラムの落下高は 0.1 mごとに任意の高さに調節できる。従来のディーゼルパイルハンマーに比べて「重いラムを低い位置から落下させる」という特徴がある。

(4) ドロップハンマー〈モンケン〉
鋼製ハンマーの自然落下により打ち込むもので、自重が杭質量以上、かつ、杭長さ 1m当たり質量の10倍以上のものを使用する。落下高さは原則として、2m以下とし、杭頭の破損を防ぐ。

(d) アースオーガー
打込み工法に併用するアースオーガーは、プレボーリング工法と同様に地層に合わせた十分な性能をもち、適正な掘削速度で行わなければならない。

(e) 杭の心出し
杭の心出しは、堅固に設置した遣方から行い、小さい木杭等で、杭心を表示しておく。また、杭心合わせは円板を定規に、心を合わせて周囲に石灰で線を引くなどの方法により行い、杭ずれを防ぐ。

(f) 運搬及び取扱い
(1) 運搬及び取扱いに当たっては、杭に損傷を与えないように注意し、有害なひび割れや傷が生じた杭を使用してはならない。

(2) 運搬に際しては、適切な位置にまくら材を敷き運搬中に荷崩れしないようロープ、くさび等を使用して強固に留める。

(3) 杭の吊上げ点は、JIS A 7201(遠心カコンクリートくいの施工標準)による。また、吊上げ点の位置は、工場あるいは現場で印をつけておくことが望ましい。

(4) 杭の仮置きは地盤を水平に均し、杭の支持位置にまくら材を置き1段に並べることが望ましい。やむを得ず2段以上に積む場合には有害な応力が生じないよう、また、荷崩れしないよう適切な処置をとる。

(g) 建込み
(1) 地中障害物等が予想される場合は、杭施工に先立ち試掘等を行い必要に応じて撤去する。

(2) 杭の建込みは、杭心に正しく設置し、杭打ち機の鉛直器又は、直角二方向からトランシット、下げ振り等を用いて観測し、杭が正しく鉛直を保つようにする。

なお、先端が閉塞している杭で中に水が入っている場合は、ウォーターハンマー現象により縦割れを生じるおそれがあるので水を抜いてから建込む。

(h) 打込み
(1) 杭、キャップ、ハンマーの各軸がずれると偏打の原因となるので、クッションの交換等、十分な調整を行い、各軸を合わせてから打撃を開始しなければならない。

(2) 1群の杭の打込みは、なるべく群の中心から外側へ向かって打ち進める。逆にすると地盤が締まってしまい、中心部分で打込みが困難になる。片押しも同じような理由で避けるのがよい。

(3) 1本の杭の打込みは、なるべく中断しないで連続して行う。一時中止すると打込みが困難になることがある。

(4) ディーゼルパイルハンマーで最初から連続打撃すると、杭の傾斜や曲がりが生じやすいため、打初めは数回空打ちして、杭の貫入方向を確認するのがよい。

(5) 油圧パイルハンマーはラムの質量が比較的大きいので、杭の鉛直性が不安定な初期段階にラム落下高が大きいと、1打撃当たりの貫入量が大きくなり、杭が傾斜することがあるので、落下高さを10~20cm程度にするのがよい。

なお、ラムの最大落下高さは、杭の種類等に応じて決定する必要がある。

(6) ドロップハンマーで打込む場合には、杭が振れやすいため、杭の傾斜や座屈等が起こるおそれがあるので、初期貫入時に特に慎重な施工をしなければならない。

(7) 打込み中は、随時杭軸の変位、傾斜及び貫入状況を観測し、傾斜、変位については打込み初期に修正する。杭頭が破壊した場合は設計担当者と打ち合わせ、増杭等の処置が必要になる。

(8) 杭に傾斜が生じると貫入量が少なくなる。特に、砂質土の場合は影響が大きく、鉛直を保っていないために打込み困難となる場合がある。また、大きく貫入するはずのない箇所で急激に貫入量が増すなどの異常貫入は、杭の途中破壊、座屈等による場合がある。

(9) 杭頭のクッション材が損耗すると、クッション効果がなくなり杭頭が破壊するので、杭頭キャップのクッション材の損耗には注意する。

(10) 杭を作業地盤面以下に打込む場合には、図4.3.18のようなやっとこが用いられる。やっとこをかける長さは4m程度を限度とし、長いものは避けるようにする。

(11) 杭先端が開放の場合は、中空部に土が入り空気が圧縮されたり、また、水が入りウォーターハンマー現象等で杭が破裂する場合があるので、杭内の土及び水の上昇に対応して十分な空気抜き孔を設けたキャップを使用する。

(12) 打込み中に杭が浮き上がったり、横移動する場合には、杭先端に穴をあけたり、オーガー併用等の対策をする必要がある。

(13) 軟弱地盤に打込む場合、中間の比較的硬い地層を打ち抜く場合や長尺杭を施工する場合には、打撃力を調整(ハンマー落下高さを小さくすることや特殊キャップの使用等)して打撃を行い、杭に生じる引張力によるひび割れを生じさせないようにするか、プレストレスの大きい杭を使うなどの検討をする必要がある。


図4.3.18 やっとこ

(i) 打止め
打込みは、原則として、指定された深さまで行う。指定された深さに達しても所定の貫入量以下にならない場合又は指定された深さに達する前に所定の貫入量以下になった場合は、設計担当者と打ち合わせて、杭の長さを変更する必要がないか検討する。

また、杭に過剰な打撃を与えないための目安は、杭の長さ・形状や地盤の状況等により一義的には決められないが、JIS A 7201には、杭1本に対する打撃制限回数の目安が示されている(表4.3.6参照)。

表4.3.6 総打撃回数の目安(JIS A 7201 : 2009)

(j) 施工精度
打込み完了後の杭頭の水平方向のずれの精度は特記によるとされている。ずれが所定の値を超えた場合の処理については設計担当者と打ち合わせる。

施工精度の目安値としては、(-社)日本建築学会「JASS4 杭・地業および基礎工事」では、水平方向のずれはD/4 (Dは杭径)、かつ、100mm以下、鉛直精度は 1/100以内とすることが望ましいとされている。

杭頭の水平方向のずれの発生は、施工時における杭位置合わせの不良による場合が主と考えられるが、その他に杭心位置を表示した杭の設置違い、軟弱な施工地盤において機械移動に伴う表示杭の移動、障害物(地上、地中)の存在及び不陸な施工地盤面での工事環境等の要因も含んでいるので、杭工事の事前整備が重要となる。

4.3.4 セメントミルク工法

(a) セメントミルク工法の概要は.4.3.1(d)に示すとおりである。
この工法は国土交通省住宅局建築指導課監修「埋込み杭施工指針・同解説」もあり確立された一般的な施工法であるが、杭の耐力や精度等は施工する者の経験と技術力によるところが大きいため、専門施工業者に保有機械や施工実績等を提出させ、工事に相応した技量を有していることを確認しなければならない。

また、信頼のおける杭を施工するために、施工管理技術者として、技術士、建築士、土木施工管理技士、建築施工管理技士等、又は(-社)コンクリートパイル建設技術協会の「既製杭施工管理技士」の資格を有する者等を置くことが望ましい。

(b) 試験杭
(1) 埋込み工法における試験杭の目的は、施工機械や各種の安定液等の適否、土質状態、地下水位及び被圧水等の有無、施工時間、支持地盤の位置及び種類の確認であるが、更に、掘削試験における掘削深さ、高止まり量やセメントミルク拡等の管理基準を定めることでもある。特に打止めの深さの確認は打込み工法のような動的支持力による確認を行うことができないため、杭先端位置が設計上の支持層地盤に到達しているかを立会い確認する必要がある。

(2) 一般的な試験方法は、原則として、設計図書等で特記された位置に行い、特記がされてない場合は、地盤構成が明らかなボーリング調査実施地点に近接した杭を数本施工し、掘削機の電流計の値や掘削能率等の施工データ及びオーガースクリューに付着している土砂と土質調査資料又は設計図書との照合で、地盤構成との関係を求める。次に、10~30mm間隔で先行杭を施工し、施工データを参考に支持層を確認し、敷地全体の支持層深さを明らかにする。電流計の自動計測の例を図4.3.19に示す。

なお、電流計による値とN値の関係は定量的な関係がない。例えば、電流値の 200 AmpがN =45に相当するとの関係はなく、またその調査方法の違いからも無理があるため、現時点では地層構成の硬さの変化の傾向を調べるだけの定性的な参考値であることに注意されたい。

(3) 調査項目は、次の事項を主とし、表4.3.7の管理項目について行う。

表4.3.7 管理項目 (埋込み杭施工指針より)

(i) 掘削液、根固め液、杭周固定液等

(ii) 杭建込み
① 杭の鉛直性
② 圧入の状況
③ 高止まり量
④ 杭周固定液の溢液の確認

(iii) 掘削
① 作業地盤
② 掘削土の確認
③ 掘削所要時間
④ 孔内液面の高さ

(iv) 注入
吐出量、吐出圧、吐出時間、注人量

(4) 支持層の確認に際しては、電流計指示値や掘進速度で把握するとともに、ときどきオーガーを静かに引き上げ、羽根に付いている土を観察する。

なお、あらかじめ支持地盤の深さを示す 0.5mごとの等深線図を作成しておくとよい。


図4.3.19 自動計測記録の例

(c) セメントミルク工法による施工
(1) 掘削機
(i) アースオーガーは連続スパイラル製の中空軸のものを用いるが、性能や寸法等が各メーカーにより異なるので、十分検討して適切なものを選ぶ。スクリュー長さは所定掘削深さ+3m程度とし、曲がりのあるものは使用しない。

(ii) オーガーヘッド(オーガービット)は施工精度、施工能率等に与える影響が大きいので掘削地盤に応じて適切な形状のもの使い分ける(図4.3.20参照)。ヘッド径(ビット径)は、「標仕」4.3.4 (f)で杭径+100mm程度とされている。


図4.3.20 オーガーヘッド

(iii) 支持地盤の確認には、アースオーガーの駆動用電動機の電流値の変化が目安となる。このため「標仕」4.3.4(f)では電流値を自動記録できるものとしている。
なお、油圧式オーガーを用いた場合の支持地盤の確認については、設計担当者と打ち合わせる必要がある。

(2) 掘削
(i) 掘削は、地盤に適した速度で掘り進めることが重要である(表4.3.8参照)。粘着力の大きな地盤や硬い地盤では無理な負荷をかけるとアースオーガーが曲がったり破損したりするため十分に時間をかけて掘削排土する。

表4.3.8 掘削速度

(ii) オーガーの引上げ速度は、根固め液等の注入量に合わせて行う。
注入量に比べて引上げ速度が速いと孔内に負圧が生じ、孔壁崩壊の原因となる。
また、逆の場合には孔内圧が上がり過ぎて、逸水を生じて孔壁崩壊の原因となる。

(iii) 掘削中、オーガーに逆回転を加えるとオーガーに付着した土砂が落下するので、「標仕」4.3.4(f)では、逆回転を行ってはならないと定めている。

なお、引上げ時にも正回転とする。

(iv) 掘削深度が支持地盤に近づいたら掘削速度を一定に保ち、アースオーガーの駆動用電動機の電流値の変化を読みとって支持地盤への到達を確認する。

(v) 支持層の掘削深さや杭の支持地盤への根入れ深さは、設計支持力とも関連するため特記によるが、一般的には支持層の掘削深さを1.5m程度とし、杭を支持層中に1.0m以上根入れする。また、高止まりは0.5m以下とする(図4.3.21参照)。

(vi) 掘削は、養生期間中の杭に悪影響を与えないよう十分に注意して行う。杭の間隔は杭径の2.0倍程度とすることが多いが、セメントミルク工法の場合には掘削径を杭径+100mmとしており、透水性の高い砂質地盤等で孔壁が崩れやすい場合には、掘削によって隣接杭周囲の地盤を緩めるなどのおそれがあるので十分注意する。


図4.3.21 掘削深さと支持層との関係

(3) 各種液の管理
(i) 掘削液
① 掘削液(安定液)の機能は、孔壁の崩落を防ぐよう安定を保ち、各種の液の逸水を防ぎ、湧水やボイリングを抑えることなどである。管理については、4.5.4 (c)(3)を参照する。

② ベントナイトは粉末度200メッシュ以上、膨潤度 3g/g以上のものを使用するとよい。調合及び粘性については表4.3.9及び4.5.4(c)(3)を参照する。

表4.3 9 掘削液の調合例

(ii) 根固め液
① 根固め液の水セメント比は、施工の実績等から「標仕」では70%(質量百分率)以下としている。また、「標仕」4.3.4(f)では圧縮強度は3個の供試体の平均値で 20N/mm2以上と定めているが、これは試験結果にばらつきが大きいこと、セメントペーストの指定強度の算出が困難であること、杭の設計耐力を確保するために必要な強度として20N/mm2程度で十分であると考えられることなどから決められたものである。

② 根固め液は必ず杭の先端位置から注入しはじめ、安定液を押し上げるようにする。オーガーヘッドは常に根固め液の上面以下に保つ。また、オーガーを上下させてはならない。

なお、ポンプからの圧送時点とオーガーヘッド先端からの注入時点とで時間的ずれがあるので、試験掘削のときに十分検討しておく。

(iii) 杭周固定液
① 杭周固定液は、杭長が長く、かつ、周辺地盤が軟弱で、強度の高い根固め液を杭頭まで充填する必要がない場合に使用するほか、杭の水平抵抗と摩擦力を確保するために使用するものであり、硬化後の圧縮強度のみでなく、既製杭との付着強度が周辺地盤より高いことが必要である。

② 調合は、現場の土質条件に応じた試験練りを行ってから決定するのが望ましい。杭周固定液のブリーディングの発生を抑制するためにベントナイトが使用されるが、その調合例を表4.3.10に示す。

表4.3.10 杭周固定液の調合例

(iv) 管理面から見れば使用液の種類は少ない方がよく、なるべく2種類の液で行うことが望ましい。

なお、崩壊しやすい地盤や逸水のおそれのある地盤では、安定液と杭周固定液とを兼用することは好ましくない。

(v) 根切り後、杭と地盤の間に空隙がある場合は、杭の水平抵抗を確保するために、増粘剤を添加した杭周固定液やモルタルを使用して空隙を埋める。

(vi) 供試体の製作には 、(公社)土木学会「コンクリート標準示方書(規準編)」のプレパックドコンクリートの注入モルタルのブリーデイング率及び膨張率試験方法によるポリエチレン袋を使用することになっているが、地方等で入手が困難な場合には、(-社)コンクリートパイル建設技術協会のポリエチレン袋を使用すればよい。

(4) 杭の建込み
(i) 掘削孔壁が時間経過とともに崩壊することがあるので、速やかに杭を建込む。
(ii) 杭の建込み直前に、必要に応じて下げ振り等により検尺を行い、高止まりしないかどうかを確認しておく。

(iii) 掘削孔に杭を挿入する際、杭の先端で孔壁を削ると高止まりの原因となるので鉛直性に注意して建込む。また、挿入速度が速すぎると水流によって孔壁が崩落するので、静かに挿入する。

(iv) 杭が所定の支持地盤に逹したのち、杭先端を根固め液中に投入させるため 2t 程度のドロップハンマーで軽打する(落下高さは0.5m程度とする。)。

軽打できない場合は、杭打ちゃぐらの重量を反力として圧入する。杭頭を設計高さにそろえるために、杭を中吊りにしたり圧入量を調整してはならない。

(v) 施工後、根固め液や杭周固定液が十分硬化する以前に杭が動くことのないよう適切な保持治具を用いて養生する。

(vi) 継杭を行う場合は、下杭の杭頭を地上約1m程度に保持しておき、上杭を建込み、継手の接続を行う。図4.3.22に保持装置の一例を示す。


図4.3.22 保持装置の一例

(5) 杭の運搬、取扱い、施工精度は4.3.3による。

(6) 廃液処理、排土処理は場所打ちコンクリート杭に準ずる。

4.3.5 特定埋込杭工法

(a) 一般事項
特定埋込杭工法は、平成13年国土交通省告示第1113号第6の規定に基づいて許容支持力が定められた埋込み工法のことをいい、下記の種類がある。

(i) 平成14年1月11日付けの国土交通省住宅局建築指導課の事務連絡に基づく旧38条認定工法

(ii) 建築基準法施行規則第1条の3第1項の規定に基づく認定工法

(iii) 指定性能評価機関による技術評定を取得している杭で、地盤の条件等が評定の適用範囲と見なせる場合

(iv) その他、上記以外で許容支持力が求められた工法

(b) 試験杭
(1) 特定埋込杭工法の試験杭は、本工事の初期あるいは本工事に先立ち、設計・施工計画の妥当性を確認するために実施するもので、使用機械や各種の使用液の適否、施工能率、特記で定められた支持層の位置及び種類の確認が主な目的である。

(2) 特定埋込杭工法の試験杭の施工については、各工法に定められた施工条件に従って行う。

(c) 施 工
特定埋込杭工法の杭は各施工法によって機械機種や施工方法も異なるので各工法に定められた施工条件に従って行うものとする。一般的な事項を次に示す。

(i) 掘削法
プレボーリング工法に用いるアースオーガーは、スパイラルオーガー、特殊ロッド、両者の併用等があり、中掘り工法では、連続スパイラルオーガーが用いられる。

駆動装置は、掘削径、長さ及び地盤条件により、一般に 40~250kWが使用される。

オーガーヘッドについては、地層に合わせた形状や工法仕様によりいろいろな構造が選定される。

支持層の確認には、駆動用電動機の電流値を自動記録し、目安とすることが行われてきたが、これは掘進速度や駆動機容量に左右され、明確にできないことも多い。したがって、消費電流値と時間を掛けた積分電流値で目安とする技術が進められ、従米より正確であるとして試験杭において用いられ普及しつつある。

(ii) プレボーリング工法による施工
① プレボーリング工法による掘削径は、工法により異なるが、杭径よりも +30~100mm程度が多く、できるだけ過大とならないことが望ましい。

② 掘削は周囲の地盤をできるだけ乱さないように行う。

③ 孔壁崩壊のおそれのある場合又はボイリングのおそれがある場合は、掘削液を使用し、適切な処置をして施工する。崩壊のおそれがない場合は、掘削液を使わず施工してもよい。

④ 継手接続作業中は、杭の孔内落下を防止する処置をしなければならない。

⑤ その他については、施工計画書、施工仕様書等に従って適切に施工する。

(iii) 中掘り工法による施工
① 中掘り工法に使用するスパイラルオーガー径は、杭の内径 -(30~60)mmが一般的である。

② 掘削中は過度に先掘り及び拡大掘りをしてはならない。

③ 中空部の排土を促進するため、オーガー先端からエアーを噴出させ、効果的に排土することが多い。一般に常用圧力 0.7 ~ 1.0MPaのものが使われている。

④ 最終打撃によって支持力を得ようとする工法の場合、過度の先掘りをしてはならない。中掘り設置後の打込み長さは地盤状態に影響されるため試験杭において定められるが一般には杭径の 3~5倍程度を目安としている。

(iv) 根固め
① 埋込み工法で先端部を根固めする場合は、施工計画書、施工要領書等による方法で先端部を処理して支持力の確保を図らねばならない。

② 根固め作業に使用するミキシングプラント、グラウトポンプは、十分な性能を有すること。材料の計量及び作液については、自動的に行うとともに、その計量記録をプリントアウトするプラントが製造され、一部使用されつつある。最近では、根固め部の品質確認のために、根固め部から試科を採取して固化強度等を調査する管理手法が、研究・開発されている。

(v) 杭の運搬及び取扱い、施工精度等については.4.3.3 による。

また、杭頭中空部に基礎コンクリートを打ち込む方式で、短い杭の場合、根固め液や杭周固定液が砂や礫で増量し、杭頭まで上昇して固化することがある。

この場合、溶液の使用量について試験打ちで検討する。

(vi) 廃液処理、排土処理は、場所打ちコンクリート杭に準ずる。

(vii) 施工管理者は、当該工法の施工管理講習会を受講した者や (-社)コンクリートパイル建設技術協会が定める既製杭施工管理技士の資格を有する者が望ましい。
また、専門工事業者の技術レベルを確認する場合は、当該工法の施工実績等を提出させる。

4.3.6 継 手

(a) 現場継手方法

(1) 杭の現場継手は、溶接による工法と接続金具による無溶接継手工法とが採用されており、「標仕」では杭の継手の工法の適用は特記とされている。

(2) 技能者
(i) 溶接継手は「標仕4.3.6(c)」に定めた資格を有する者

(ii) 無溶接継手は、接続方法の講習会を修了し、接続方法を理解したと認められる者

(3) 溶接棒は、JIS Z 3211(軟鋼、高張力鋼及び低温用鋼用被覆アーク溶接棒)の規格によるものとし、自動溶接又は半自動溶接を用いるときには、これに適した溶接ワイヤを用いる。

JIS A 7201(遠心力コンクリートくいの施工標準)では、表4.3.11のように定められている。

表4.3.11 溶接棒、ワイヤの種類及び径(JIS A 7201 : 2009)

(4) 継手部の開先の目違い量は2mm以下、許容できるルート間隔の最大値は 4mm以下とする(図4.3.23参照)。


図4.3.23 杭の継手部許容値(JIS A 7201 : 2009)

(b) 溶接施工
(1) 溶接の方式には端板式と円筒式とがあるが、現在はほとんどの杭が端板式(図4.3.24参照)である。なお、端板式の溶接部は部分浴込み溶接である。


図4.3.24 端板式溶接継手

(2) 上下の杭軸が一直線になるように上杭は頭部を支持して仮付け溶接を行う。

必要がある場合は仮締め治具を用いて支持する。仮付けは、点付け程度のものでなく、必ず 40mm以上の長さとし本溶接と同等の完全なものとする。

(3) 溶接部は接合前にワイヤブラシ等を用いて泥土、ごみ、錆、油脂、水分等、溶接に有害なものを除去する(7.6.6参照)。

(4) 降雨時、降雪時、強風時(10m/秒程度以上)には溶接を行ってはならない。
また、原則として気温が 0℃以下の場合は溶接を行ってはならない。ただし、気温が0℃から-15℃の場合は、溶接部から100mm以内の部分を36℃以上に予熱して行う場合はこの限りではない。

(5) 多層溶接を行う時は、下層のスラグ及び有害物の除去を十分に行ったのち、次層を溶接する(7.6.7 (i)参照)。

(6) 盛上げの不足があってはならないが、余盛りは3mm以下とし、不要な余盛りは行わない。

(7) 半自動アーク溶接による溶接条件の参考例を表4.3.12に示す。

(c) 溶接部の確認
溶接部は JIS A 7201(遠心力コンクリートくいの施工標準)の8.2[溶接継手による場合]のg)目視による確認で、全数検査を行う。

(d) 継手部に接続金具を用いた方式(無溶接維手)
継手部に接続金具を用いた方式は、数種類が建築基準法に基づく指定性能評価機関において性能を評価されている。施工は、各工法に定められた施工条件によるものとする。図4.3.25及び26にその代表例を示す。

表4.3.12 杭の半自動アーク溶接条件例(JIS A 7201 : 2009)


図4.3.25 無溶接継手例1


図4.3.26 無溶接継手例2

4.3.7 杭頭の処理

(a) 最近の既製コンクリート杭は、特定埋込杭工法による施工が多く、この工法は掘削深度を管理して杭の打設を行うために、杭頭の高さもそろえて施工されるので、切断することが少ない。したがって、その他の工法等で杭頭を切断する必要がある場合には、設計担当者が特記することとされている。

(b) 所定の高さより低い場合は、設計担当者と打ち合わせる。

(c) 杭頭を切断する方法には、次のように油圧ポンプによる外圧方式と回転モーターによるダイヤモンドカッタ一方式等がある。

(1) 外圧方式
所定の切断面より100mm上がり程度の位置に鋼製バンドを締付け、杭頭切断機用いて切断したのち、バンドを取り外し、所定の高さまで、はつりのみを用い、手はつりを行う。この場合、押圧方向は軸筋位置を避け、手はつりでは軸筋をたたかないようにし、縦ひび割れが生じないように注意して行う。プレストレス量の大きい杭は特に注意が必要である(図4.3.27及び28参照)。

この方法は広く使われており、切断面がはつり面のため基礎との付着が期待でき、軸筋を残す場合も有利な方法である。

(2) ダイヤモンドカッタ一方式
所定の切断面にブレードが位置するように切断機をセットし、杭の周りをガイドリングを介して一周し、切断又は軸筋サークルより内側までの切込みを入れてタガネ割りする方法である(図4.3.27参照)。

この方法は、切断面が平滑で作業の衝撃も小さく軸筋も同時に切断してしまう特徴がある。


図4.3.27 杭切断機の例


図4.3.28 手はつりの例

(d) プレストレストコンクリート杭の頭部を切断した場合は、切断面から350mm程度まではプレストレスが減少しているので、設計図書により補強を行う。

(e) 基礎コンクリート打込み時に、コンクリートが杭の中空部に落下しないように図4.3.29のように杭頭をふさぐ処置をしておく。


図4.3.29 コンクリート落下防止の例

4.3.8 施工記録

(a) 施工記録の目的及び全般的な報告書の記載事項については,4.2.5 (1)及び(2)を参照する。

(b) 打込み工法の施工記録
(1) 記録報告する事項等は、次のとおりであり、分かりやすく整理しておく。
(i) 一般事項
① 杭位置図(位置のずれを含む)
② 杭種類材質、形状寸法製造工場名
③ 打込み機の名称と性能諸元

(ii) 打込みに関する事項
① 打撃回数    [ 回/m ]
② 全打撃回数   [ 回 ]
③ 打込み深さ   [ m ]
④ 打込み所要時間 [ 時分 ]
⑤ ハンマー落下高さ[ m ]
⑥ 最終貫入量   [ mm ]
⑦ リバウンド量  [ mm ]
⑧ 推定支持力

(iii) その他
①溶接施工記録
②杭頭切断記緑

(2) 試験杭の施工記録試及び杭頭切断記録書式は、JIS A 7201(遠心力コンクリートくいの施工標準)に示す。

(c) 特定埋込杭工法の施工記緑
特定埋込杭工法の報告書については、各工法に定められた書式に従って作成する。

(d) セメントミルク工法の施工記録
(1) 報告する事項等は、次による。
(i) 一般事項
① 杭位置図(位置のずれを含む)
② 杭種類、材質、形状、寸j法、製造工場名
③ 打込み機の名称と性能諸元
④ 各掘削・固定液等の諸元

(ii) 掘削に関する事項
① 掘削液の記録(標準調合、比重、使用量)
② 根固め液(強度、使用量)
③ 杭周固定液(強度、使用量)
④ 掘削土の確認事項
⑤ 掘削所要時間
⑥ 等深線図と掘削深さの関係
⑦ アースオーガー駆動用電動機の電流値
⑧ 注入材の吐出量、吐出圧、注入量

(iii) その他
(b)に準ずる

(2) 「埋込み杭施工指針・同解説」に定められている杭の施工記録の例を図4.3.30に示す。

図4.3.30 杭の施工記録の形式及び記入例(埋込み杭施工指針より)

4章 地業工事 4節 鋼杭地業

第4章 地業工事 


4節 鋼杭地業

4.4.1 適用範囲

(a) この節は、鋼管又はH形鋼を用いる鋼杭地業に適用する。

(b) 鋼杭の特徴としては次のような事項が挙げられる。
(1) 工場製作品であるため、安定した材料品質が得られる。
(2) 曲げに強く、水平力を受ける杭に適する。
(3) 応力に応じて材質や肉厚を変えた合理的な設計ができる。
(4) 支持地盤の不陸に対応しやすい。
(5) コンクリート杭と比較して質量が軽く、取扱いが簡単である。
(6) 腐食に対する対策が必要である。
(7) 大口径で薄肉の鋼管は、局部座屈を生じることがある。
(8) 先端開放形の打込杭では、支持地盤への根入れが十分でないと支持力が低下する場合がある

(c) 施工計画書の記載事項は.4.3.1(c)を参考にするとよい。

(d) 杭施工法の概要
(1) 施工の一般事項
鋼管杭の施工に当たっては、地盤状況、現場状況、設計支持力等を考慮して、杭を予定深度まで正しく、かつ、安全に設置できる工法及び施工機械とする。

(2) 施工法の分類
杭の施工法の分類を図4.4.1に示す。


図4.4.1 鋼杭の施工法の分類

現在は、騒音・振動の問題により、市街地での打込み工法の採用実績は非常に少なく、埋込み工法が主流である

なお、特定埋込杭工法とは、4.3.5(a)に示す工法である。

① 打撃による打込み工法(図4.3.5及び6参照)
一般に杭径600mm以下の施工に用いられる。地盤を緩めることがなく支持力は期待できるが、ハンマーを使用するため騒音、振動が大きく市街地では問題となる場合が多い。これらの対策としては、油圧パイルハンマーの使用、プレボーリング工法、中掘り工法との併用等が挙げられる。

プレボーリング併用打撃工法は、アースオーガーで一定深度まで掘削し、杭を建て込んだのち、打撃により所定深度まで施工する方法である。中掘り打撃工法は、中掘り工法により一定深度まで杭を埋設したのち、打撃により所定深度まで施工する方法である。

開放形の鋼管杭を使用した場合、硬い中間層でも比較的容易に打ち抜くことができる。また,施工深度としては、80m程度まで可能である。

なお、杭径が600mmを超える開放形の鋼管杭を施工する場合は、先端閉塞効果の問題があるため、別途、載荷試験等で支持力を確認する必要がある。

② 振動による打込み工法
バイブロハンマーにより杭に上下方向の強制振動を加え、杭周面摩擦力及び先端抵抗を動的な摩擦力と抵抗力に減少させて貫入させる工法である。中間層があり、打抜きが困難と予想される場合には、ウォータージェット等を併用する場合がある。

一般に杭径600mm以下の施工に用いられるが、バイブロハンマーを使用するため、市街地では問題となる場合がある。

杭に強制振動を加えるため、杭頭部の補強又は適切な管厚の設定が必要である。施工実績が少ないため、載荷試験等で支持力を確認するなど、工法の適用に当たっては注意を要する。

③ プレボーリングによる埋込み工法(図4.3.7参照)
アースオーガーによってあらかじめ掘削された縦孔に鋼管杭を建て込み、軽打、圧入により支持地盤に定着させる工法で、一般にセメントミルク工法と称される。掘削中は孔壁の崩壊防止を兼ねた杭周固定液(貧配合のセメントミルク)をオーガー先端から噴出し、所定深度に達したのち、根固め液に切り替え所定量を注入する。その後、オーガーを引き上げ、杭を建込み、軽打又は圧入により支持地盤に定着させる。

なお、オーガーを引き上げる際は、必要に応じて杭周固定液を充填するなどの注意が必要である。

この施工法は、国土交通省住宅局建築指導課監修「埋込み杭施工指針・同解説」に準じて施工するものであり、鋼管杭に適用する場合は、先端閉塞杭を使用する。通常用いられる杭径は 300〜600mm、施工深度は30m程度以下である。

④ プレボーリングによる球根拡大埋込み工法(特定埋込杭工法 図4.4.2参照)
アースオーガーによってあらかじめ掘削された縦孔に鋼管杭を建て込み、回転埋設により支持地盤に定着させる工法である。掘削中は、孔壁の崩壊防止を兼ねた掘削液又は杭周固定液(貧配合のセメントミルク液)をオーガー先端から噴出しながら原地盤と混合かくはん、所定深度に達したのちに根固め液(富配合のセメントミルク液)に切り替え、拡大球根を築造する。所定量の根固め液を注入後、オーガーを引き上げ、杭を建て込む。支持地盤への杭の定着は、施工機械の自重を利用して回転埋設される。杭周固定液を使用する場合としない場合がある。

支持地盤に築造された拡大根固め部と杭先端部の一体化を図るため、杭先端部には特殊な金物が取り付けられている。根固め部を拡大することで大きな支持力を得ようとするものである。

なお、この工法は建築基誰法に基づく特定埋込杭工法となっており、施工に当たっては工法で定められた条件に従って行うものとする。


図4.4.2 プレポーリングによる球根拡大埋込み工法

⑤ 中掘りによる埋込み工法(特定埋込杭工法 図4.3.8参照)
杭中空部にオーガーを挿入、地盤を掘削しながら土砂を排出し、杭を設置する工法である。支持地盤の土砂とセメントミルク液を混合かくはんすることにより、支持力を得ようとするものである。

杭の設置や排土を促進するため、圧縮空気又は水をオーガー先端から噴出させながら掘削する場合が多く、施工機械の自重を利用した圧入装置やドロップハンマーによる軽打等を併用する場合もある。

掘削機には、通常アースオーガーが使用される。また、杭の設置を容易にする目的と補強の目的で,杭先端には補強バンド又はその他付属品が取り付けられる。
支持地盤の土砂とセメントミルク液を混合かくはんする方法には、高圧ジェットによる方法、低圧の機械かくはんによる方法等がある。いずれの工法も建築基準法に基づく特定工法となっており、施工に当たっては、工法で定められた条件に従って行うものとする。

⑥ 中掘りによる球根拡大埋込み工法(特定埋込杭工法 図4.4.3参照)
杭中空部にオーガーを挿入し、地盤を掘削しながら杭を圧入する工法である。支持地盤において先端部を拡大掘削し、支持地盤の土砂とセメントミルク液を混合かくはんすることにより、大きな支持力を得ようとするものである。杭周固定液を使用する場合としない場合がある。

掘削機には、通常アースオーガーが使用されるが、支持地盤に築造された拡大根固め部と杭外周部の付着を増加させる目的で、杭先端部にはスパイラル状の突起、補強バンド又はその他付属品が取り付けられる。

支持地盤の土砂とセメントミルク液の混合かくはんは、低圧による機械かくはんによる方法が用いられる。杭は施工機械の自重を利用した圧入装置やドロップハンマーによる軽打等を併用し埋設される。杭を回転させながら圧入する方法もある。

なお、この工法は建築基準法に基づく特定埋込杭工法となっており、施工に当たっては、工法で定められた条件に従って行うものとする。


図4.4.3 中堀りによる球根拡大埋込み工法

⑦ 地盤改良と併用した埋込み工法(特定埋込杭工法 図4.4.4参照)
杭中空部にオーガーを挿入し、オーガー先端からセメントミルク液を噴出しながら原地盤と混合かくはんすることで、ソイルセメント柱を造成しつつ杭を設置する工法である。支持地盤においては、高濃度のセメントミルク液とその土砂を混合かかくはんし支持力を発現させるもので、ソイルセメント柱との付着を高めるために外面に突起(リブ)の付いた鋼管杭が使用される。地盤改良と併用することにより、大きな支持力を得ようとする工法である。

掘削機にはアースオーガーが使用されるが、オーガーヘッドは地盤の掘削と混合かくはんの機能を兼用した特殊なものが使用される。また、杭の設置を 容易にするために、杭を回転させながら施工機械の自重を利用して圧入する。

なお、この工法は建築基準法に基づく特定埋込杭工法となっており、施工に当たっては、工法で定められた条件に従って行うものとする。


図4.4.4 地盤改良と併用した埋込み工法

⑧ 回転圧入による埋込み工法(特定埋込杭工法 図4.4.6参照)
杭先端にスパイラル状の鉄筋又はつばさ状、スクリュー状の掘削翼を取り付けた鋼管杭(図4.4.5参照)を回転圧入により所定深度まで設置する工法である。


図4.4.5 回転圧入による埋込み工法の杭先端部の例

施工に当たっては三点支持式の杭打ち機、全回転型の圧入装置等が使用される。支持地盤にねじり込むことにより、支持力を発現させるものであり、大きな支持力と無排土を特徴としている。

地盤に鋼管杭をねじり込むため、管厚の設定には注意を要するほか、中間層がある場合の打抜きの可否等、事前検討が必要である。

なお、この工法は建築基準法に基づく特定埋込杭工法となっており,施工に当たっては,工法で定められた条件に従って行うものとする。


図4.4.6 回転圧入による埋込み工法

(e) 支持力の狩定
杭の許容支持力は、4.3.1(e)による。

4.4.2 材 料

(a) 鋼 杭
鋼杭としては、JIS A 5525(鋼管ぐい)とJIS A 5526 (H形鋼ぐい)が規定されている。これらは一般構造用炭素鋼管や一般構造用圧延鋼材で作られた H形鋼と材質的には同等であるが、形状・寸法許容差等が杭専用のものとなっている。また、鋼管杭においてはその使用目的から大口径・厚肉の製品がラインナップされている。

(b) 許容応力度
鋼材の許容応力度については、建築基準法施行令第90条では基準強度(F値)に応じて定めることとしている。鋼杭に使用されるSKK400・SKK490及び SHK400・SHK490の設計基準強度は、「鋼材等及び溶接部の許容応力度並びに材料強度の基準強度を定める件」(平成12年12月26日 建設省告示第2464号)に定められている。鋼杭の許容応力度を表4.4.1に示す。

表4.4.1 鋼杭の許容応力度

また、鋼杭においては、許容応力度を求めるに際し、腐食や局部座屈等を考慮しなければならない。

(c) JIS A 5525(鋼管ぐい)の抜粋を次に示す。

JIS A 5525 : 2009

1 適用範囲
この規格は、土木・建築などの構造物の基礎に使用する溶接鋼管ぐい(以下、くいという。)の単管について規定する。この規格が適用される寸法範囲は、通常、外径318.5mm〜2000mmとする。

なお、本体に規定する項目のほかに、注文者があらかじめ製造業者との協定によって指定することができる突起付き単管の品質規定を附属書Aに、単管に取り付ける附属品の代表的な形状及び寸法を附属書Bに、単管に施す加上及び塗装・被覆の代表的な例を附属書Cに示す。

注記1
地すべり抑止用の継目無鋼管及び遠心力鋳鋼管には、それぞれ JIS G 3444 及びJIS G 5201がある。

注記2
くいの構成及び各地の呼び名を、図1に示す。
単管とは、素管のまま、又は素管を工場で円周溶接した継ぎ管をいい、くいは、単管又は単管の組合せをいう。現場で連結する単管は、上側を上ぐい、中側を中ぐい、下側を下ぐいという。ただし、中ぐいが2本以上になる場合は、下側から中1ぐい、中2ぐいという。

注記3
工場円周溶接とは、素管と素管とを製造業者が円周溶接によって単管にする場合をいい、現場円周溶接とは、単管と単管とを施工業者が円周溶接によってくいにする場合をいう。

注1) 地すべり抑止用のくいを含む。

図1- くいの構成

3 種類の記号
くいの種類は、2種類としその記号は、表1による。

表1- 種類の記号

4 製造方法
くいの製造方法は、次による。

a) 素管は、アーク溶接によるスパイラルシーム溶接若しくはストレートシーム溶接、又は電気抵抗溶接によって製造する。

なお、工場円周溶接における素管のシーム溶接部は、互いに円周方向の1/8以上ずらさなければならない。

b) 突起付きくいの素管は、圧延方向に平行な連続した突起を設けた鋼帯を、突起が鋼管の内面及び/又は外面になるようにスバイラルシーム溶接によって製造する。

c) 単管は、素管を工場で円周溶接して製造する場合及び素管をそのまま使用する場合がある。

5 化学成分
素管は、11.1によって試験を行い、その沿鋼分析値は、表2による。

表2 – 化学成分

6 機械的性質
素管は、11.2によって試験を行い、その引張強さ、降伏点又は耐力、伸び、溶接部引張強さ及びへん平性は、表3による。へん平性の場合は、試験片にきず又は割れを生じてはならない。ただし、溶接部引張強さは、アーク溶接によって製造した素管に適用し、へん平性は、電気抵抗溶接によって製造した素管に適用する。

表3 – 機械的性質

8 附属品、加工及び塗装・被覆

注文者は、くいに付随する附属品、加工及び塗装・被覆を指定してもよい。その場合の外観、検査、表示などは、受渡当事者間の協定による。また、附属品の代表的な形状及び寸法を、附属書Bに、加工及び塗装・被覆の代表的な例を附属書Cに示す。

9 単管の形状,寸法,質屈及び寸法許容差
9.1 管端の形状 単管の管端形状は、図2による。厚さの異なる素管を継ぐ場合は、通常、図3に示すように、あらかじめ工場で加工する。ただし、補強又は加工について特に要求のある場合は、受渡当事者間の協定によってもよい。

注記
図2において、頭部端面とは、くいの上端部をいい、先端部端面とは、くいの下端部をいう。


図2 – 単管の両端及び現楊円周溶接部の形状


図3 – 厚さの異なる管の円周溶接部の形状

附属害B(参考) 附属品の形状及び寸法の代表例

序 文
この附属書は、注文者の指定によって単管に取り付ける附属品の形状、寸法などの代表例を示すもので、規定の一部ではない。

注 記
附属品とは、くいの施工時に一時的に必要となる仮設部材をいう。

B.1 附属品の材料及び溶接材料
附属品の材料は、機械的性質がJIS G 3101のSS400と同等又はそれ以上とし、附属品取付け用の溶接材料は、附属品の規定引張強さ以上のものを得るため、次のいずれか又は組合せによる。

JIS Z 3211、 JIS Z 3312、JIS Z 3313、JIS Z 3351、JIS Z 3352

なお、素管と附属品との強度が異なる場合には、低強度側の規格値と同等若しくはそれ以上の引張強さをもつ溶接材料を用いる。

B.2 附属品の外観検査及び表示
附属品の外観、検査及び表示は、次による。

a) 外観
附属品の外観は、使用上有害な欠点があってはならない。

b) 検査
附属品の材料及び溶接部は、B.1に適合しなければならない。また、外観は、 目視によって検査し、a)に適合しなければならない。

c) 表示
工場において本体に取付けない附属品には、種類及びサイズが識別できる表示をしなければならない。

B.3 附属品の形状及び寸法の例
B.3.1 補強バンド
B.3.1.1 補強バンドの形状
補強バンドの形状は.図B.1による。


図B.1 – 補強バンドの形状の例

B.3.1.2 取付寸法
取付寸法は、次による。

a) 取付位置 (ℓ1) : 18mm
b) 溶接脚長 (a) : 6mm(溶接は、すみ肉溶接による。)

B.3.1.3 寸法許容差
補強バンドの寸法許容差は、表B.1による。
表B.1 – 補強バンドの寸法許容差

B.3.2 つり金具
つり金具の形状及び寸法は.図B.2による。

図B.2 – つり金具の形状及び寸法の例

B.3.3 裏当てリング及びストッパー
単行の現場円周溶接部の裏当てリング、及び中ぐい又は下ぐいにストッパーを取り付ける場合、その形状及び寸法は特に指定のない限り図B.3による。


図B.3 – 裏当てリング及びストッパーの形状並びに寸法の例
JIS A 5525 : 2009

(d) 鋼管杭にはJISの附属書に記載されている付属品のほかに、表4.4.2に示す付属品が一般的に使われている。材質はSS400と同等又はそれ以上とする。

表4.4.2 付属品の名称

(e) 鋼杭の腐食の要因と防食方法
(1) 腐食の要因には、次のようなものがある。
(i) 土又は水の化学的性質
(ii) 鋼材の自然電位及び付近の電気施設の影響
(iii) 水や空気の流動性
(iv) 地中温度
(v) 細菌

(2) 防食方法には、次のような方法がある。
(i) 杭自体に腐食代を見込む方法
(ii) 塗装による方法
(iii) コンクリートを巻き立てる方法
(iv) 電気防食による方法

4.4.3 打込み工法

(a) 鋼杭の打込み工法には、打撃によるもの、振動によるものなどがあるが、打撃によるもの(打撃工法)が一般的に用いられる。施工は4.3.3によるが、大口径で薄肉の鋼管杭の場合は局部座屈を生じる場合があるため、杭頭部の補強又は t/D ( t:管厚、D:管の外径)を検討する必要がある。また、杭を座屈させず、かつ、効率よく施工するためには、ハンマーの質量も適正なものを選定することも必要である。

打撃工法の打止めは、4.3.3 (i)による。杭に過剰な打撃を与えないための目安は、杭の長さ・形状や地盤状況等により一義的には決められないが、通常の施工においては、繰返し打撃による杭体の疲労破壊が生じた事例はほとんどない。しかし、非常に硬質で厚い中間層を打ち抜く場合や岩盤等の支持地盤に打ち込む場合は、疲労破壊が起こる場合もあるので、別途、検討する必要がある。

(b) H形鋼杭
H形の方向が指定された場合は、その方向を規制するキャップを用いるか、その他適切な方法により.杭の断面形状を指定された方向に合わせなければならない。

(c) 杭先端部の処理
杭先端部の形状としては、補強を行う場合、補強を行わない場合及び先端部にシューを付ける場合等がある。「標仕」4.4.2 (b)では、特記がない場合、鋼管杭は開放形で補強バンドはJISの解説に合わせることとしている。

(d) 杭頭部の処理
一般に打込み時の杭頭部の処理は、適切なハンマーを選定し適切な作業を行えば、杭頭部の補強は特に必要としないが、大口径で薄肉の鋼管杭( t/Dで1%未満)を使用する場合や疲労破壊が懸念される場合等は、管厚を厚くするなどの処置をする。


4.4.4 特定埋込杭工法

(a) プレボーリングによる球根拡大埋込み工法(特定埋込杭工法)

(1) 試験杭
(i) 試験杭は本工事の初期あるいは本工事に先立ち、設計・施工計画の妥当性を確認するために実施するもので、使用機械や施工方法の適否、施工能率、支持地盤の確認が主な目的である。

(ii) 試験杭の施工については、工法で定められた条件に従って行う。

(2) 施工
(i) 施工方法
地盤の掘削及び杭の設置には、アースオーガーを装備した三点支持式杭打ち機が使用される。駆動装置は、杭径、長さ及び地盤条件により異なるが、一般に 90kW〜150kWが使用される。

支持地盤の確認は、施工機械から送られてくる駆動用電動機の消費電流値や貫入速度等の施工情報と貫入深度を基に行う。

(ii) 一般部の掘削及びかくはん
所定深度までの掘削は、掘削水又は杭周固定液にて行う。掘削完了後に杭の埋設に支障がないよう、孔内泥土をかくはんする。

杭周固定液を使用する場合は、掘削ヘッド先端より所定の配合条件で混練されたセメントミルク液を所定量吐出しながら、一定の速度にてアースオーガーを上下反復し、孔内泥土と混合かくはんする。

(iii) 先端部の掘削及び根固め
孔内泥土のかくはん作業が完了したのち、掘削水又は根固め液にて先端部を所定の形状に拡大掘削する。

掘削水を使用して拡大掘削する場合は、拡大掘削完了後に根固め液に切り替え、原位置地盤と混合かくはんし、根固め部を築造する。
根固め液を使用して拡大掘削する場合は、一定の速度にてアースオーガーを上下反復しながら原位置地盤と混合かくはんし、根固め部を築造する。

(iv) 杭の運搬及び取扱い
杭の運搬及び取扱いは、4.3.3 (f)によるが、杭先端部に特殊な金物が取り付けられているため、特に注意を要する。

(v) 施工精度
施工精度は、4.3.3( j )による。

(3) 杭先端部の処理
杭先端部の形状は、工法で定められた条件によるものとする。

(b) 中掘りによる埋込み工法(特定埋込杭工法)

(1)中掘りによる埋込み工法の概要は、4.4.1 (d) に示すとおりである。施工は、4.3.5 による。

(2)杭先端部の処理
杭先端部の形状は、工法で定められた条件により異なるため、特記によるものとする。

(c) 中掘りによる球根拡大埋込み工法(特定埋込杭工法)
(1) 試験杭
(i) 試験杭は本工事の初期あるいは本工事に先立ち、設計・施工計画の妥当性を確認するために実施するもので、使用機械や施工方法の適否、施工能率、支持地盤の確認が主な目的である。

(ii) 試験杭の施工については、工法で定められた条件に従って行う。
(2) 施 工
(i) 施工方法
杭の設置には、地盤の掘削をしながら杭を圧入する装置を装備した三点支持式杭打ち機が使用される。駆動装置は、杭径、長さ及び地盤条件により異なるが、一般に115kW 〜 150kWが使用される。

支持地盤の確認は、施工機械から送られてくる駆動用電動機の消費電流値や貫入速度等の施工情報と貫入深度を基に行う。

(ii) 一般部の掘削
所定深度までの掘削は、一定速度にて行う。杭内の掘削土が圧密され掘進性が低下する場合は、圧縮空気等で掘削土を排出する。また、杭先端より掘削ヘッドを必要以上に先行させる掘削は、杭の領斜や周辺地盤を乱す可能性があるため行ってはならない。

掘削時に杭周固定液を注入する場合は、掘削ヘッド先端より所定の配合条件で混練されたセメントミルク液を所定量吐出する。

(iii) 先端部の掘削及び根固め
所定深度まで掘削したのち、先端部を所定の形状に拡大掘削する。拡大掘削完了後、根固め部用の配合条件にて混練されたセメントミルク液に切り替え、原位置地盤と混合かくはんし、根固め部を築造する。

(iv) 杭の運搬及び取扱い
杭の運搬及び取扱いは、4.3.3(f)によるが、杭先端部にスパイラル状の鋼板や金物が取り付けられているため、特に注意を要する。

(v) 施工精度
施工精度は、4.3.3 ( j )による。

(3) 杭先端部の処理
杭先端部の形状は、工法で定められた条件によるものとする。

(d) 地盤改良と併用した埋込み工法(特定埋込杭工法)
(1) 試験杭
(i) 試験杭は本工事の初期あるいは本工事に先立ち、設計・施工計画の妥当性を確認するために実施するもので、使用機械やセメントミルク液の適否、ソイルセメント柱(固化体)の出来形、施工能率、支持地盤の確認が主な目的である。

(ii) 試験杭の施工については,工法で定められた条件に従って行う。

(2) 施工
(i) 掘削及びかくはん方法
原位置地盤の掘削と混合かくはんは、心ずれ防止装置付き特殊ロッドの先端に掘削翼とかくはん翼を装備した特殊ヘッドにて行う。駆動装置は、掘削径、長さ及び地盤条件により異なるが、一般に115〜150kWが使用される。

固化体の造成と鋼管の設置は、掘削かくはんヘッド先端より所定の配合条件にて混練されたセメントミルク液を所定量吐出しながら、一定の速度にて行う。これにより、均質な固化体を築造する。

支持地盤の確認には、施工機械から自動的に送られてくる掘削深度、駆動用電動機の消費電流値、掘進速度等の施工情報を基に、積分電流値・掘進抵抗値等を表示させる施工モニター装置が使用される。この総合的な情報に基づき、支持地盤の確認を行う.。

(ii) 先端部の掘削及びかくはん方法
先端部の築造に際しては、先端部用の配合条件にて混練されたセメントミルク液に切り替えたのち、所定の掘進速度にて掘削及びかくはんを行う。

(iii) 杭の運搬及び取扱い
杭の運搬及び取扱いは、4.3.3 (f)によるが、外面に突起の付いた鋼管杭を使用するため、特に注意を要する。

(iv) 施工精度
施工精度は、4.3.3 ( j )による。

(v) 廃液及び排土処理
廃液及び排土処理は、場所打ちコンクリート杭に準ずる。

(3) 杭先端部の処理
杭先端部の形状は、工法で定められた条件(特記)によるものとする。

(e) 回転圧入による埋込み工法(特定埋込杭工法)

(1) 試験杭
(i) 試験杭は本工事の初期あるいは本工事に先立ち、設計・施工計画の妥当性を確認するために実施するもので、使用機械や施工方法の適否、施工能率、支持地盤の確認が主な目的である。

(ii) 試験杭の施工については、工法で定められた条件に従って行う。

(2) 施 工
(i) 施工方法
杭の設置には、回転圧入装置を装備した三点支持式杭打ち機又は据骰き式の全回転型圧入装置が使用される。駆動装置は、杭径、長さ及び地盤条件により異なるが、一般に三点支持式杭打ち機の場合 75〜90kWが使用される。

支持地盤の確認は、施工機械から送られてくる駆動用電動機の消費電流値や貫入速度又は回転トルク値等の施工情報と貫入深度を基に行う。

(ii) 杭の運搬及び取扱い
杭の運搬及び取扱いは、4.3.3 (f)によるが、杭先端にスパイラル状の鉄筋又はつばさ状、スクリュー状の掘削翼の付いた鋼管杭を使用するため、特に注意を要する。

(iii) 施工精度
施工精度は、4.3.3 ( j )による。

(3) 杭先端部の処理
杭先端部の形状は、工法で定められた条件(特記)によるものとする。

(f) プレボーリングによる埋込み工法(「標仕」以外の埋込み工法)

(1) プレボーリングによる埋込み工法の概要は、4.4.1(d)に示すとおりである。施工は、4.3.4による。

(2) 杭先端部の処理
「埋込み杭施工指針・同解説」によれば、杭はすべて閉端杭を使用することになっているため、杭先端部にはシュー等を取り付け、閉端杭としなければならない。

4.4.5 継手

(a) 鋼管杭の継手は現場溶接、H形鋼杭の継手は高カボルト継手が一般的である。高カボルト継手は、7章4節による。

「標仕」では、鋼管杭の溶接は、原則として、半自動又は自動アーク溶接とすることが定められている。半自動溶接はセルフシールドアーク溶接、自動溶接はセルフシールドアーク溶接又は炭酸ガスアーク溶接が用いられている。

(b) 溶接技能者
溶接技能者は、4.3.6(a)(2)による。

(c) 継手
鋼管杭の溶接継手部の仕様は、JISで規定されている( 4.4.2(c)参照)。
開先及びストッパーは、原則として製造所で加工される。たれ止めは必要に応じて図4.4.7のような銅バンドを使用する。

図4.4.7 たれ止め用銅バンド

また、建築基準法に基づく指定機関において性能を評価された無溶接継手があるが、これを使用する際の継手部の仕様は、工法に定められた条件によるものとする(図4.4.8参照)。


図4.4.8 鋼管杭の無溶接継手の例

(d) 溶接施工
鋼管杭の現場溶接施工において必要な注意事項は次のとおりである。
(i) 母材の溶接部は、溶接に先立ち、水分、油、スラグ、塗料等溶接に支障となるものを除去する。ただし、丈夫なワイヤプラシでも取れないミルスケール及び溶接に支障のない塗料は、除去しなくてもよい。

(ii) 溶接機とその附属用具は、溶接条件に適した構造及び機能を有し、安全に良好な溶接が行えるものとする。

(iii) 溶接部は、有害な欠陥のないもので、表面は、できるだけ滑らかなものとする。

(iv) スラグの除去は、各パス及び溶接完了後入念に行う。

4.4.6 杭頭の処理

(a) 杭頭の処理は特記が原則であるが、打込み完了後、設計図書で指定された高さに切りそろえることが望ましい。

(b) 杭頭を切断する場合、定規を用いガス切断により、水平、かつ、できるだけ平滑に仕上げる。

(c) 杭頭の位置が所定の高さに達していない場合は、設計担当者と打ち合わせて、杭の継足しを行うか、基礎の位置を下げるなどの処置を決め、受注者等と「標仕」1.1.8に基づく協議を行う。

(d) 継足しを行う場合の溶接は、「標仕」4.4.5の規定によるが、溶接部の開先形状等を含めて、設計担当者と打ち合わせて検討する必要がある。

4.4.7 施工記録

施工記録は、4.3.8 に準ずる。

4章 地業工事 5節 場所打ちコンクリート杭地業

第4章 地業工事 


5節 場所打ちコンクリート杭地業

4.5.1 適用範囲

(a) 「標仕」では、アースドリル工法、リバース工法、オールケーシング工法及び場所打ち鋼管コンクリート杭工法並びにこれらと組み合わせた拡底杭工法について規定している。

(b) 作業の流れを図4.5.1に示す。

図4.5.1 アースドリル工法、リバース工法及びオールケーシング工法の作業の流れ

(c) 施工計画書の記載事項は、おおむね次のとおりである。

なお、赤文字を考慮しながら品質計画を検討する。

① 工程表(機械搬入、段取り、鉄筋加工、掘削とコンクリート打込み、機械搬出及び片付けの時期)
② 施工業者名、施工管理技術者名(資格証明書等、工事経歴書等)及び作業の管理組織
③ コンクリートの計画調合表及び計算書
④ 鉄筋の種類と規格

⑤ 地中埋設物・障害物の調査、移設、防護、撤去等の計画
⑥ 施工機械の仕様の概要及び性能
⑦ 施工方法(掘削精度の確認方法を含む)
⑧ 杭の配置図及び施工順序
⑨ 安定液等を用いる場合の調合計画及び管理方法
⑩ 支持地盤の確認方法
⑪ スライム(沈殿物)の処理方法
⑫ 鉄筋加工及び建込み方法(浮上がり防止方法を含む)
⑬ コンクリートの打込み及び養生方法

⑭ 安全対策(酸欠、有毒ガス、施工機械の転倒等)
⑮ 公害対策(土砂の運搬によるこぼれ、ベントナイト廃液等の飛散と処理、騒音及び振動の対策等)
⑯ 施工結果報告書内容(4.5.7参照)
⑰ 作業のフロー,管理の項目・水準・方法、品質管理体制・管理責任者.品質記録文書の書式とその管理方法等

4.5.2 施工管理技術者

(a) 場所打ちコンクリート杭工法は、建設工事の大型化・高層化に伴い、大口径で長尺の杭を、低騒音・低振動で築造できるという大きな特徴をもっている。しかし、その反面、次の問題点が指摘されている。

(1) 杭先端及び周辺地盤の緩み
(2) 杭壁崩壊の懸念(安定液及び水頭圧の管理)
(3) コンクリートの打込み管理ミスによる品質の低下
(4) スライム沈積による支持力の低下

これらの問題点を解決し、信頼のおける場所打ちコンクリート杭を築造するには、豊富な経験と知識を必要とするため、「標仕」4.5.2では施工に際し施工管理技術者を置くように定めている。

(b) 平成9年版「共仕」では、場所打ちコンクリート杭の施工管理技術者は、「場所打ちコンクリートくい工事に関する知識及び技術及び・証明事業認定規程」(昭和60 年7月12日 建設省告示第1016号)に基づく「基礎施工士」を規定していた。しかし、この告示は平成13年3月で廃止され、代わりに建設業法施行規則第17条の2により「基礎施工士検定試験」(実施(-社)日本基礎建設協会)が規定されていたが、それも平成17年12月に廃止された。

(-社)日本基礎建設協会では、技術者の育成を推進するために、引き続き「基礎施工士検定試験」を実施しており、この「検定試験」に合格した者を「標仕」4.5.2に規定する「施工管理技術者」として能力のある者として扱うことができる。

なお、旧告示第1016号に基づき認定された「基礎施工士」及び建設業法施行規則第17条の2により規定された「基礎施工士検定試験」に合格した者も、「標仕」 1.3.2(a)の規定により同等以上の能力のある者と見なすことができる。

4.5.3 材料その他

(a) 鉄 筋
(1) 鉄筋の品質は、特記されたものとし、5章2節による。
(2) 鉄筋の加工及び組立は、4.5.4 (h) 及び5章3節を参照する。

(b) コンクリート
(1) 「標仕」表4.5.1では、コンクリートの種別と水セメント比の最大値、所要スランプ、粗骨材の最大寸法、単位セメント量の最小値を定めているので、これらを満足する調合強度のものを選ぶ。

なお、単位水量の最大値は、「標仕」6章の規定により一般には185kg/m3となる。しかし、骨材の地域性等により、これにより難い地域もある。その場合は、場所打ち杭に使用するコンクリートについては、地中に構築されるため充填性を優先させるべきであり、またコンクリート打込み後の養生条件も良いことなどから、設計担当者に確認のうえで、(-社)日本建築学会「JASS 5 鉄筋コンクリート工事」 24節[水中コンクリート]で規定している200kg/m3までは、品質計画を明確にすることにより認める場合も考えられる。

(2) 「標仕」では、水や泥土等によるコンクリートの品質の劣化等を考慮して単位セメント量の最小値を定めている。したがって、掘削孔中に水がないA種の場合には、品質の劣化も小さいためB種より単位セメント量の最小値が小さくなっている。

(3) コンクリートは地中に打ち込まれるため外気温による影響が少ないので、一般には養生温度による強度の補正は行わないが、北海道や東北地方の寒冷地では、地中温度が 8〜12℃と低くなることがあるため、必要に応じコンクリートの養生温度による調合強度の補正を行う。

(4) コンクリートの構造体強度補正値(S)の値は特記によるが、特記がない場合は、3N/mm2とする。ただし、4.5.5に規定する場所打ち鋼管コンクリート杭工法及び拡底杭工法において、(-財)日本建築センター等の評定取得時に、構造体強度補正値(S) を0 N/mm2(平成22年5月以前は、品質保証強度(ΔF)が 0 N/mm2 にて評定を取得している工法は、その条件の値でよい。平成20年8月以前のコンクリート強度補正についての評定を取得していない工法においては、特記がない場合は、3 N/mm2とする。

4.5.4 アースドリル工法、リバース工法及びオールケーシング工法

(a) 一般事項
(1) 工法の概要
アースドリル工法、リバース工法、オールケーシング工法の特性を表4.5.1に示す。

表4.5.1 工法の特性

①アースドリル工法
この工法は、図4.5.2の機械を用い、図4.5.3のような工程により杭を築造する。

図4.5.2 アースドリル掘削機


図4.5.3 アースドリル工法

② リバース工法
この工法は、図4.5.4の機械を用い、図4.5.5のような工程により杭を築造する。


図4.5 4 リバース掘削機


図4.5.5 リバース工法

③ オールケーシング工法

この工法は、図4.5.6の機械を用い、図4.5.7のような工程により杭を築造する。


図4.5.6 オールケーシング掘削機

図4.5.7 オールケーシング工法

(2) 各工法の施工機械と近接建物等との標禅的な必要距離を図4.5.8に示す。



図4.5.8 施工機械と建物との必要距離の例

(b) 試験杭
(1) 本杭を施工するに当たり、施工機械や各種安定液の適否、土質状態、地下水位及び被圧水等の有無、施工時間、支持地盤の確認等の種々の調査を行い、以後の本杭の参考とするために試験杭の施工を行う。

(2) 試験杭は、4.2.2で述べたように、本杭の最初の1本目の杭を試験杭とする場合には、報告を求めて打ち合わせ、その処置について検討する。

(3) 試験杭の調査項目としては表4.5.2を参照する。

表4.5.2 試験杭の施工時における調査項目

(c) アースドリル工法
(1) 掘削機の据付け
(i) 掘削機の据付けは、その作業地盤の耐力に応じて、道板、鋼板、砂利等を敷き、作業中に機械が傾斜することを防ぐ(機種によっては90tを超えるものがある。)。

(ⅱ) ケリーバーの中心を杭心に正確に合わせ、機体を水平に据え付ける。

(2) 掘削
(i) 最初のうち掘削孔が鉛直になるまでは慎重に掘削を行い、表層ケーシングを鉛直に建て込む。

(ⅱ) 土質に応じバケットの回転速度を調節しながら掘削を進める。掘削された土砂を常に観察し、崩壊しやすい地盤になったら安定液を用いる。

なお、バケットにリーマーを用いる拡幅掘削は、表層ケーシンク建込み深度までとし、それ以深の掘削にはリーマーを用いてはならない。

(ⅲ) 掘削深さが所定の深度に達し、排出される土により予定の支持地盤に達したことが確認されたらスライム処理をして検測を行う。

なお、検測とは、検測テープにより掘削深度を測定することであり、孔底の2箇所以上で行う。

(ⅳ) 支持層の確認は、バケット内の土砂を、土質柱状図及び土質資料と対比して行う。また、その際にケリーバーの振れや回転抵抗等も参考にする。

(v) 掘削孔の側墜の確認を、超音波等により行う装置が開発されている。なお、この装置を使用して確認を行う場合は、特記で指定される。

(3) 安定液
(i) アースドリル工法における孔壁保護は、通常安定液によって行う。

(ⅱ) 安定液には、ベントナイト系安定液とCMC系安定液があり、どちらも使用する材料は同じであるが、その違いはベントナイトとCMCの配合率の違いである。

(ⅲ) (ⅱ)の安定液の選択と配合は、土質や地下水条件を考慮して決める。また、適時試験を行って安定液を調整し、安定液の劣化を防ぐことが大切である。表4.5.3は、砂質土の場合の安定液の配合例である。

表4.5.3 砂質土の場合の安定液の配合例(単位:%)

(ⅳ) 安定液の性質
① 主な材料

② 繰り返し使用する場合の安定液の管理基準は、実状に応じたものとするが、その例を表4.5.4に示す。

表4.5.4 安定液の管理基準の例

③ 標準比重は、清水とベントナイトのみの新液の比重とし表4.5.5に示す。

表4.5.5 安定液の標準比重

④ 必要粘性とは、対象地盤に必要とする粘性をいう。

⑤ 作液粘性とは、新しく作った安定液の粘性をいう。アースドリル工法では、安定液を繰返し使用すると粘性が小さくなる例が多いので、一般的には作液 粘性は必要粘性より大きくする。

⑥ 安定液には、適当な量と質の分散剤が添加されていることを原則とする。

(d) リバース工法
(1) 掘削機の据付け
(i) サクションポンプユニットとロータリーテープルを切り離して作業できる(本体と10m程度切り離した位置で施工できる。)ため、杭施工場所に特別な養生を必要としない。

(ⅱ) スタンドパイプの建込みを行う。スタンドパイプは、表層地盤の崩壊防止及び自然地下水に対し2.0m以上の水頭差を保持し、静水圧により孔壁の崩壊を防止するために用いるもので、建込みは油圧ジャッキ又はバイブロハンマーにより行う。

スタンドパイプの径は、孔径より150〜200mm大きいものとする。また、根入れは地下水位、表層の土質の軟弱度により異なり、スタンドパイプ内の水圧で周囲の軟弱土が外側に移動あるいはパイピングを起こさないだけの深さとする。

(2) 掘削
(i) この工法は、静水圧 0.02N/mm2以上に保つことにより孔壁の崩壊を防ぐ工法であるので、掘削に際しては地下水位を確認し水頭差を2.0m以上保つように十分注意する。

(ⅱ) 掘削順序は、掘削ビットを埋設するだけの孔をハンマーグラプで掘削して孔内に水を満たし、所定の水圧を保ちながらロータリーテープルでビットを回転させ掘削をする。掘削土砂は楊水とともに沈殿槽に排出され、ここで掘削土砂を沈殿させ除去する。掘削土砂を除去し比重が小さくなった泥水は、再び掘削孔内に還流する。

(ⅲ) 本工法は掘削土をそのままで地上に排出しないため、支持層の確認はデリバリホースの末端から掘削土砂を採取し、土質柱状図及び土質資料と対比して行う。

(ⅳ) 三翼ビットを使用して掘削した孔底は、中心部は深く、外周ほど浅くなっている。このため検測は外局部に近い位置で2点以上行う。

(v) 側壁測定装置による掘削孔の確認は、(c)(2)(v) による。

(3) 孔内水
(i) リバース工法では、周辺の施工機械や作業による振動等の影響を受けない地盤に至るまでスタンドパイプを建込み、掘削中に地盤の粘性土を含んだ泥水が孔堡にマッドケーキを形成することと、孔内水頭を地下水位より2m以上高く保つことにより、スタンドパイプ先端以深の孔壁を保護し安定させる。

(ⅱ) 粘性土が多く介在する地盤は、掘削初期の使用水は清水であってもマッドケーキ形成に必要な循環水となる。

(ⅲ) 砂質系の地盤では、マッドケーキの形成に必要なコロイドが不足するので、事前に泥水を作液し掘削を開始しなければならないので注意が必要である。

(ⅳ) 泥水の比重は、掘削能率を高めるためには低く、孔壁保護面からは高いほうがよいという二面性を持つ。この両者を考慮して、その適正比重を 1.02〜1.08とする。

(e) オールケーシング工法
(1) 掘削機の据付け
(i) 掘削機の据付け地盤の補強については、(c)(1) による。

(ⅱ) 揺動式の場合の掘削土砂の排出は、機械の前方に限られるので、隣地より杭までの距離がない場合は作業動線に注意しなければならない。

(ⅲ) ケーシングチューブは、杭心に合わせ直角二方向からトシランシット又は下げ振りでチェックして鉛直に建込む。

(ⅳ) ファーストチューブの建込みは、水平精度と鉛直精度に直接影響を及ぼすので次のような方法で行うとよい。

① 杭心を正しくセットさせるため、図4.5.9に示すような治具を用い、ファーストチューブをセットする。


図4.5.9 ファーストチューブ建込み杭心合わせの定規の例

② 使用するファーストチューブは、鉛直性の監視が容易に行えるよう6m程度の長さにする。

③ ファーストチューブは、杭心に合わせ直角二方向からトランシット又は下げ振りでチェックして鉛直に建て込む。

(2) 掘 削
(i) 掘削は、ケーシングチューブを先に揺動又は回転圧入し、土砂の崩壊を防ぎながらハンマーグラブにより掘削をする。掘削が鉛直にできるかどうかは、最初のケーシングチューブ 1〜2本の建込み状況によって決まる。

(ⅱ) 被圧地下水等によるボイリングを起こしやすい砂又は砂礫層の場合及び軟弱粘性土層でのヒービングを起こしやすい地盤の場合は、孔内に水を張り防止する。

(ⅲ) 常水面以下に細かい砂層が 5m以上ある場合は、ケーシングチューブの外面を伝って下方に流れる水の浸透流や揺動による振動によって、周囲の砂が締固められケーシングチューブが動かなくなること(ケーシングチューブが食われる。)があるので注意する。

(ⅳ) 掘削終了時、ファーストチューブ刃先を杭底面より先行させないように注意する。

(v) 掘削深さが所定の深さに達し、排出される土から予定の支持地盤に達したことが確認されたら、スライムを処理し検測を行う。

(vi) 支持層の確認は、ハンマーグラブでつかみ上げた土砂を土質柱状図及び土質資料と対比して行う。

(3) 孔内水
オールケーシング工法では、掘削孔全長にわたりケーシングチューブを用いて孔壁を保護するため、杭壁崩壊の懸念はほとんどない。しかし、(2)(ⅱ)の場合や孔内水位と地下水位に水頭差がある場合は、掘削底周辺部の緩みの発生が想定されるので、孔内へ注水し水圧のバランスを図る。

(f) スライム処理
(1) スライムとは、孔内の崩落土、泥水中の土砂等が孔底に沈殿、沈積したものである。この上にコンクリートを打ち込むと、荷重がかかったときに杭が沈下するので、スライムの処理は重要である。

このほか、スライムは強度を含めたコンクリートの品質低下、杭の断面欠損及び支持力低下の原因となる。

(2) スライムの処理には、一次処理と二次処理がある。一次処理は掘削完了直後に行うスライム処理で、二次処理はコンクリート打込み直前に行うスライム処理である。各スライム処理方法の例を、図4.5.10に示す。


図4.5.10 スライム処理方法の例

(3) アースドリル工法のスライム処理は、一次処理として底ざらいバケットにより行う。バケットは杭径より10cm小さいものを用い、バケットの昇降によって孔壁が崩壊することのないよう緩やかに行う。

鉄筋かご建込みの際の孔壁の欠損によるスライムや建込み期間中に生じたスライムは、二次処理としてコンクリート打込み直前に水中ポンプ方式又はエアーリフト方式等により除去する。

(4) リバース工法のスライム処理は、一次処理として掘削完了後ビットを孔底より若干引き上げて緩やかに空回しするとともに、孔内水を循環させて比重を下げ、鉄筋かごやトレミー管建込み期間中のスライム沈積量を少なくする。

二次処理は、コンクリート打込み直前にトレミー管とサクションポンプ等により孔底に沈積したスライムを除去する。

(5) オールケーシング工法のスライム処理は、ドライ掘削や孔内水位の低い場合は、掘りくずや沈殿物の量が少ないので、掘削完了後にハンマーグラプで静かに孔底処理(孔底のさらい)を行う。また、孔内水位が高く沈殿物の多い場合には、ハンマーグラプで孔底処理をしたのち、更に、スライムバケットによる処理を行う。

なお、コンクリート打込み直前までに沈殿物が多い場合には、二次処理として、水中ポンプ方式等によりスライムを除去する。

(g) 排液及び排土処理
(1) 掘削時には相当の量の排液がでるが、排液は沈殿槽あるいは直接真空ポンプ車に集め場外へ搬出して指定場所へ投棄するか、排液槽に収集し凝集剤を添加して、上澄と回収泥土とに分け、回収泥土を更に脱水処理等をして含水比を小さくし投棄する。

(2) 掘削された排土は、含水比が大きい( 50〜200%)ので敷地内に集積して、天日乾燥させ、その含水比を小さくする。更に、セメントを添加して固形化する場合と、石灰と混合しその化学反応の熱を利用して水分を除去し固形化する場合がある。

(3) これらの排液及び排土処理に当たっては、「廃棄物の処理及び清掃に関する法律」の適用を受ける場合があるので、法律に従った処理が必要になる。

この場合、元請業者は産業廃棄物の排出事業者に該当するので、処分の方法、形態、場所等を確認させたうえで、許可を取得している業者に委託して処理を行わせるようにする。

(h) 鉄筋の加工及び組立
(1) 鉄筋は、かご形に組み立てる(図4.5.11参照)。
主筋と帯筋を溶接している例が見られるが、点付け溶接は注意しても主筋が断面欠損をするおそれがあるので「標仕」4.5.3(a)では、主筋への点付け溶接は行わないこととしている。また、帯筋の重ねは特記が原則であるが、10 d以上の片面溶接(両面の場合は5d)とすることが望ましい。補強リングは、主筋に断面欠損を起こさないように十分注意し堅固に溶接する。また、補強リングは、鉄筋かごの径により主筋の内、外周のいずれに取り付けてもよい。


図4.5.11 鉄筋かご

(2) 溶接技能者は、7.6.3を参照する。

(3) 溶接施工は、7章6節による。

(4) 鉄筋かごの継手は、「標仕」表5.3.2により、鉄線(通常10#以上)で、ずり落ちないように結束する。安易に溶接を用いるとアンダーカットや急冷により材質に悪影評を与えるので注意する。

なお、鉄筋かごの建込みは、かごを変形させないように静かに行い、自由落下させてはならない。

(5) 鉄筋かごには、かぶり厚さを確保するためにスペーサーを深さ方向に 3〜5m間隔を目安として、最低で1断面4箇所以上取り付ける。スペーサーは、ケーシングチューブを用いる場合は、D13以上の鉄筋を用いる。ケーシングチューブを用いない場合に鉄筋を用いると、孔壁を損傷するので、杭径 1.2m以下の場合は鋼板 4.5 x 38(mm)、1.2mを超える場合は鋼板 4.5 x 50(mm)程度のものとする。

(6) オールケーシング工法におけるケーシングチューブの引抜き時には、ケーシングチューブと鉄筋かごの接触により、鉄筋かごが浮き上がる場合(共上がり)があるので、次の事項について注意する。

① ケーシングチューブの内面をよく消掃しておく。
② スペーサーの高さ及び位置に注意する。
③ 鉄筋かごを曲がりや変形のないように建込む。

なお、共上がりが発生した場合は、共上がり量を最小限に止めなければならない。そのためには、早期発見が大切で、鉄筋頂部から共上がりチェック用の鉄線をケーシングチューブ天端まで伸ばしておき、引抜き初期にチェックを行う。

( i ) コンクリート打込みその他

(1) コンクリートの打込みは、トレミー管を用いる。また、コンクリートの打込み開始時にはプランジャーをトレミー管に設置して、コンクリートと泥水等が混り合うのを防ぎ、下部から泥水等を押し上げるように行う。また、トレミー管及びケーシングチューブは、これを引き抜きながらコンクリートの打込みを行う。このときトレミー管及びケーシングチューブの先端は、コンクリートの中に常に 2m以上入っているようにする。また、トレミー管のコンクリート中への挿入長さが長くなると、トレミー管先端からのコンクリート押出し抵抗が大きくなり、コンクリートの流出が悪くなるので、最長でも 9m程度にとどめておいた方がよい。

(2) ケーシングチューブを急速に引き抜くと、コンクリートに泥水を巻き込むことになるので十分に注意をしなければならない。

(3) コンクリート打込み時に、その浮力等で鉄筋かごの浮上がりが生じる場合があるので注意する。

また、コンクリートがある程度打ち上がってから、今まで動かなかった鉄筋かごが共上がりし始めることもあるので十分注意が必要である。

(4) コンクリートの打込みは、泥水等を上に押し上げるように行うので、頂部に低品質のコンクリートができる。このため余分に打ち上げて余盛りをつくる。余盛りの高さは、「標仕」4.5.4 (c)(10) では、泥水が多くコンクリートの劣化が著しいと考えられる「標仕」表4.5.1のB種の場合は800mm以上、掘削孔底にほとんど水がたまっていないような状態を想定したA種の場合(無水掘り)を500mm以上としている。

なお、コンクリート打込み後、ブリーディングに伴ってコンクリート表面にレイタンスと呼ばれるぜい弱な物質の層が形成されるが、このような骨材を含まないモルタル状の固化物は余盛りには含まれない。

(j)埋戻し
コンクリート打込み後、杭孔が残る場合は、孔への落下防止と孔周辺地盤の崩壊防止のため埋戻しを行う。

埋戻しは、硬化し始めた杭に悪影響を与えないように敷地内の良土を静かに投入して行う。この良土は、根切りの際、杭位置の目印にもなる。

4.5.5 場所打ち鋼管コンクリート杭工法及び拡底杭工法

場所打ち鋼管コンクリート杭工法及び拡底杭工法の施工は、建築基準法に基づき認定された施工仕様により行い、それ以外については、4.5.4による。

4.5.6 杭頭の処理

「標仕」4.5.4(c)(10)で規定する余盛り部分は、根切り後、所定の位置まではつり処理をする。

はつり作業に際しては、杭本体へのひび割れや損傷の防止、はつり高さ、形状寸法に注意をする。

処理の時期は、コンクリートの硬化の程度及び後工程への影響を考慮して、「標仕」では、コンクリート打込み後14日程度経過したのちとしている。

4.5.7 施工記録

場所打ちコンクリート杭を築造するに当たり、管理した結果を記録し、杭工事の完了とともに報告書を提出させる。

(1) 施工報告書の記載事項は、おおむね次のとおりである。
(i) 一般事項
① 工事概要
② 杭仕様(杭の工法形状,寸法コンクリート強度等)
③ 施工機械の仕様・概要
④ 実施工程表
⑤ 杭位置
⑥ 鉄筋かご加工仕様
⑦ 工事写真

(ⅱ) 掘削に関する事項
① 掘削所要時間
② 掘削土砂量
③ 安定液等の記録
④ 孔底スライムの沈積状況と処理時間
⑤ 支持地盤の確認記録

(ⅲ) その他
① 鉄筋かごの建込み時間
② コンクリートの打込み時間
③ コンクリートの使用量

(2) 場所打ちコンクリート杭の施工、記録の例を図4.5.12に示す。


図4.5.12 施工記録の例

4章 地業工事 6節 砂利、砂及び捨コンクリート地業等

第4章 地業工事 


6節 砂利、砂及び捨コンクリート地業等

4.6.1 適用範囲

この節は、砂利、砂及び捨コンクリート地業等に適用する。

4.6.2 材 料
(a) 砂利及び砂地菜
(1) 砂に、シルト等の泥分が多量に混入しているものは、締固めが困難となるので、使用してはならない。

草木根、木片等の有機物が含まれていない砂を使用する。

(2) 砂利は、(3)の再生クラッシャラン、切込砂利又は切込砕石を使用する。砂利の締同めは、砂利を比較的薄い層にまき出して行うので、砂利の粒径は.JIS A 5001(道路用砕石)によるC-40程度で、あまり大きくない方がよく、粒径がそろっていない砂混じりの方がよい。

上記(1)の砂と同様、砂利に泥分の混入が多いものや、有機物が含まれているものは使用しない。

(3) 砂利には.次のものを用いる。
(i) 再生クラッシャラン
建設副産物であるコンクリート塊を破砕したものであり、品質にばらつきがある。使用箇所によっては、強度、吸水率等を確認して使用する必要がある。

(ii) 切込砂利
採取したままでふるいを通さず砂と砂利の混合したものであるが、なるべく砂利の多いものの方がよい。

(iii) 切込砕石
砕石楊の破砕したままの砕砂と砕石の混合したものである(ここでいう切込砕石は、22章でいうクラッシャランを想定していない。)。

(b) 捨コンクリート地業
コンクリートの品買は、「標仕」6.14.3による。

(c) 床下防湿層
標仕では、床下防湿層は、ポリエチレンフィルム等で、厚さ 0.15mm以上とされている。

4.6.3 砂利及び砂地業

(a) 工法は図4.6.1のように行う。

図4.6.1 砂利及び砂地業

(b) 締固めに用いる機械には、自重によるもの、自重と合わせ振動を加えて締め固めるものがある。これらの機械には、大小さまざまな大きさのものがあるので施工条件に合わせて使用する。

(1) 自重によるもの
(i) ロードローラー 線圧200〜490N/cm
(ii) タイヤローラー 輪圧3.9~49kN/1輪

(2) 自重に振動を加えるもの
(i) 振動ローラー 線圧 4.9~1,900N/cm
(ii) 振動コンパクター 自重 490~5,900N:ハンドガイド
(iii) タンパ 自重 290~1,200N:メーカーによりランマーと呼称

なお、締固め前に,機械の効果を確認するため、試験施工を行い、まき出し層厚、転圧回数等を決めるのがよい。

(c) 締固めを過度に行うと床付け地盤を破壊し、更に深い地盤をも乱すこともあるので、注意して適度な締固めを行う。また、締固めによる沈下量を事前に見込んでおき、締固め後に、地業表面が所定の高さになるようにする。締固めによるくぼみ等には、砂利又は砂を用い表而を平らにする。

4.6.4 捨コンクリート地業
捨コンクリート地業の目的を次に示す。

(1) この上に墨出しを行い、型枠等を正確に設置する。
(2) 鉄筋の組立を正確に行う。
(3) 基礎底面を平らにする。

4.6.5 床下防湿層
防湿層は、土間スラプ(土間コンクリートを含む。)の直下、断熱材がある楊合は断熱材の直下とされている。

床下防湿層の納まりの例を図4.6.2に示す。


図4.6.2 床下防湿層の納まりの例

4.6.6 施工記録

「標仕」4.6.6に規定された項目について確認し、記録する。

4章 地業工事 7節 「標仕」以外の工法

第4章 地業工事 


7節 「標仕」以外の工法

4.7.1 本設地盤アンカー(永久アンカー)

(a) 本設地盤アンカーの種類
本設地盤アンカーとは本設の構造物の一部として用い、所要の性能を全供用期間中有する地盤アンカーで、鉛直方向の引抜きに抵抗する本設鉛直地盤アンカーと、斜め方向の引抜きに抵抗する本設斜め地盤アンカーがある。本設地盤アンカーには、全供用期間にわたって、本設構造物に発生する応カ・変形及び変位の軽減や防止ができる性能が要求され,このため、引張材を腐食から守る二重防錆処理が行われる。一般に、個々の防錆方法を検討するのではなく、全体のシステムとして防錆処理が考慮された地盤アンカー工法を採用する場合が多い。このような本設地盤アンカー 工法の一例を、図4.7.1に示す。

なお、その他の工法例等については、(-社)日本建築学会「建築地盤アンカー設計施工指針・同解説」等を参照されたい。


図4.7.1 本設地盤アンカー工法の例(建槃地盤アンカー設計施工指針・同解説より)

(b) 品質管理
(1) アンカーの品質管理は、①使用材料、②施工管理、③試験(基本試験確認試験)が重要である。その際の要求品質と品質管理方法についての例を表4.7.1に示す。

表4.7.1 本設地盤アンカーの要求品質と品質管理方法

(2) 地盤アンカーには、大きな地盤のせん断抵抗や支圧抵抗が期待される。一方、地盤には、強度のばらつきや地層の起伏があり、また、地盤アンカーの耐力は、施工状態に左右される。このため、地盤アンカーの信頼性を試験によって確認する必要がある。地盤アンカーの信頼性を確認する試験には、基本試験と確認試験の2種類がある。基本試験は、設計に必要なデータを得るためのものであり、設計に先立ち実施することが基本で、施工性、引抜き抵抗力、変形、長期特性等を把握するためのものである。確認試験は、地盤アンカーが設計で要求された性能を有しているか確認する試験で、全数に対して実施する。

4.7.2 地盤改良

(a) 地盤改良の種類
(1) 地盤改良工法の種類は多種多様であるが、建築物の本設地盤の構築を目的として実績が豊富なものは、深層混合処理工法等のセメント系固化材を用いた固化工法とサンドコンパクション工法による締固め工法である。

(2) 改良効果は、改良前の地盤条件や施工等に密接にかかわっているので、事前の地盤調査により成層状況や土質を詳細に把握して効果を確認することが必要不可欠である。

(3) 地盤改良に使用する材料は、改良効果の持続性や地盤環境の観点から支障ないものを選択しなければならない。

(b) 深層混合処理工法
(1) 深層混合処理工法は、改良原理が現地土と固化材のかくはん混合であるため、改良体の品質は地層構成土質やかくはん条件に大きく影響される。

(2) 品質管理では、①配合条件、②施工管理、③効果確認が重要であり、改良目的や改良範囲.地盤条件に応じて適切な管理方法や管理値を設定しなければならない。

(3) 具体的な設計指針や品質管理指針は、(-財)日本建築センター「改訂版建築物のための改良地盤の設計及び品質管理指針」及び(-社)日本建築学会「建築基礎のための地盤改良設計指針案」を参照されたい。また、要求品質と管理方法については「国土交通省総合技術開発プロジェクト「建設事業の品質管理体系に関する技術開発」報告書 建築分野編」(平成13年3月 国土交通省建築研究所)、(-財)日本建築センター「改訂版建築物のための改良地盤の設計及び品質管理指針」及び(-社)日本建築学会「建築基礎のための地盤改良設計指針案」を参照されたい。深層混合処理工法の要求品質と品質管理方法の例を表4.7.2に示す。

表4.7.2 深層混合処理工法の要求品骰と品質管理方法

(4) セメント及びセメント系固化材を地盤改良に使用する場合には、条件によっては六価クロムが土壌環境基準を超える濃度で溶出するおそれがあるため、国土交通省では、六価クロム溶出試験を実施して六値クロムの溶出量が土壊環境基準以下であることを確認するよう、設計図書で指定することとしている。

(c) 締固め工法
(1) 締固め工法は、地盤の支持性能の向上を目的として、砂砕石等を地盤中に鉛直に打設して杭状の改良体を築造するものである。

(2) 品質管理では、①使用材料、②施工管理、③効果確認が重要であり、改良目的や改良範囲、地盤条件に応じて適切な管理方法や管理値を設定しなければならない。

(3) 締固め工法の要求品質と品質管理方法については、「国土交通省総合技術開発プロジェクト「建設事業の品質管理体系に関する技術開発」報告書 建築分野編」(平成13年3月 国土交通省建築研究所)及び(-社)日本建築学会「建築基礎のための地盤改良設計指針案」を参照されたい。締固め工法の要求品質と品質管理方法の例を表4.7.3に示す。

表4.7.3 締固め工法の要求品買と品質管理方法

参考文献

一次検定 施工(躯体工事)基礎・地業工事 4-1 基礎・地業工事等

1級建築施工管理技士
学科対策 過去問題【 重要ポイント 】

3.施工(躯体工事)
4° 基礎・地業工事

4-1 基礎・地業工事等
下記の正誤を判断せよ。

(既成コンクリート杭工事)
①先端が開放されている杭を打ち込む場合、杭体内部への土や水の流入が原因で杭体が損傷することがある。

答え

 ◯

[ 解説 ]
荷降ろしで杭を吊り上げる際には、安定するよう杭の支持点近くの2点で支持して吊り上げるようにする。

②中堀り工法では、砂質地盤の場合、緩みがはげしいので、先掘り長さを小さくする。

答え

 ◯

[ 解説 ]

③埋込み工法において、プレボーリングによる掘削径は、杭径より 10㎝程度小さくする。

答え

 ×

[ 解説 ]
埋込み工法において、プレボーリングによる掘削径は、杭径より大きいアースオーガーヘッドを用い、10㎝程度大きくする

④杭を接合する場合、接合する上杭と下杭の軸線が一致するように上杭を建て込む。

答え

 ◯

[ 解説 ]
杭の現場継手に溶接継手を用いる場合、許容できるルート間隔は 4mm以下とする。 

⑤杭に現場溶接継手を設ける場合、原則としてアーク溶接とする。

答え

 ◯

⑥セメントミルク工法において、アースオーガーは引上げ時には逆回転する。

答え

 ×

[ 解説 ]
オーガーの引上げ時でも根固め液に負圧が生じないよう、根固め液の注入速度に合わせて正回転で引き上げる。セメントミルク工法において、根固め液の強度試験用供試体の養生は標準養生とする。

(鋼管杭)
⑦バイブロハンマーを用いた振動による杭の打込み工法は、一般に杭径600mm以下の鋼管杭の打込みに用いられる。

答え

 ◯

[ 解説 ]
回転圧入による埋込み工法では、硬質で厚い中間槽がある場合は、打抜きの可否等について事前検討が必要である。

⑧鋼管杭の杭頭処理では、ガス切断、ディスクカッターやプラズマ切断が使用されている。

答え

 ◯

⑨鋼管杭の現場溶接継手は、自動溶接のエレクトロスラグ溶接で行う。

答え

 ×

[ 解説 ]
エレクトロスラグ溶接は、溶接線が鉛直に近い場合に適用され、鉄骨の溶接組立に広く用いられている。溶接線が水平である鋼鋼管の溶接には半自動又は自動アーク溶接が用いられる

一次検定 施工(躯体工事)基礎・地業工事 4-2 場所打ちコンクリート杭工事

1級建築施工管理技士
学科対策 過去問題【 重要ポイント 】

3.施工(躯体工事)
4° 基礎・地業工事

4-2 場所打ちコンクリート杭工事
下記の正誤を判断せよ。

(場所打ちコンウリート杭工事)
①オールケーシング工法において、砂質地盤の場合は、ボイリングを防止するため、孔内水位を地下水位より高く保って掘削する。

答え

 ◯

[ 解説 ]
オールケーシング工法において、軟弱粘性土地盤ではヒービング防止のため、ケーシングチューブの先行量を多くする。

②オールケーシング工法におけるスライム処理は、孔内水がない場合やわずかな場合にはハンマーグラブにより行う。

答え

 ◯

[ 解説 ]
オールケーシング工法において、スライム量が多い場合の2次スライム処理は、エアリフトによる方法や水中ポンプによる方法で行う。

③オールケーシング工法では、コンクリート打設中にケーシングチューブの先端を、常に2m以上コンクリート中に入っているように保持する。

答え

 ◯

[ 解説 ]

④アースドリル工法における安定液は、必要な造壁性及び比重の範囲でできるだけ低粘性のものを用いる。

答え

 ◯

⑤リバース工法における1次スライム処理は、底ざらいバケットにより行う。

答え

  ×

[ 解説 ]
リバース工法1次スライム処理は、掘削完了後、ビットを孔底より少し引き上げて、数分空回しをするとともに、孔内水循環させて行う
リバース工法における2次スライム処理は、一般にトレミー管とサクションポンプを連結し、スライムを吸い上げる。

⑥プランジャー方式を用いて、水中でコンクリートを打込む場合、トレミー管の先端に前もってプランジャーを装着する。

答え

 ×

[ 解説 ]
プランジャーは、水中でコンクリートを打込む際に、コンクリートの分離を防ぐためにトレミー管内にセットしコンクリートを打設する。トレミー管の先端ではない

⑦空掘り部分の埋戻しは、一般にコンクリートの打込みの翌日以降、杭頭のコンクリートが初期硬化してから行う。

答え

 ◯

⑧鉄筋かごの主筋と帯筋は、原則として鉄線結束で結合する。

答え

 ◯

⑨アースドリル工法における鉄筋かごのスペーサーは、D10以上の鉄筋を用いる。

答え

 ×

[ 解説 ]
鉄筋かごのスペーサーは、孔壁を損傷しないように鉄筋ではなく鋼板4.5x38mmあるいは 4.5x50mm程度の帯鋼板を用いる
鉄筋かごに取り付ける同一深さ位置のスペーサーは、4箇所以上設ける。杭主筋のかぶり厚さ(100mm以上)を確保するためのものでもある。

1級建築施工管理技士 く体工事 場所打ちコンクリート杭地業

場所打ちコンクリート杭地業


【 施工管理技術者 】

場所打ちコンクリート杭工法は、建設工事の大型化、高層化に伴って、大口径で長尺の杭を、低騒音・低振動で築造できるという特徴がある。しかし、その反面、次の問題点が指摘されている。

 (1) 杭先端及び周辺地盤の緩み
 (2) 孔壁崩壊の懸念(安定液及び水頭圧の管理)
 (3) コンクリート打ち込み管理ミスによる品質の低下
 (4) スライム沈積による支持力の低下

これらの問題点を解決し、信頼のおける場所打ちコンクリート杭を築造するために、施工に際し施工管理技術者を置かなければならない。

以前は、「場所打ちコンクリートくい工事に関する知識及び技術審査・証明事業認定規定」に基づく「基礎施工士」や、建設業法施行規則第17条の2による「基礎施工士検定資金」が規定されていたが、いづれも廃止されている。

現在は、(社)日本基礎建設協会が実施する「基礎施工検定試験」に合格したものを「施工管理技術者」として扱うことができる。


【 材料・その他 】

(a)鉄筋
 (1) 鉄筋の品質
  (2) 鉄筋の加工及び組立て

(b)コンクリート
(1)コンクリートの種類、水セメント比の最大値、所要スランプ、粗骨材の最大寸法、単位セメント量の最小値を定めているので、これらに適合する調合強度のものを選ぶ。単位水量は、一般には 185kg/m3であるが、施工性を考慮して、「水中コンクリート」で規定している200kg/m3までは、品質計画を明確にすることにより認めることも可能である。

(2)「標仕」では、水や泥土等によるコンクリートの品質の劣化等を考慮して単位セメント量の最小値を定めている。したがって、掘削孔中にたまる水の量が少ないA種の場合には、品質の劣化も小さいためB種より単位セメント量の最小値が小さくなっている。

(3)コンクリートは、土中に打ち込まれるため外気温による影響が少ないので、温度補正を考慮する必要はない。したがって、杭のコンクリート強度の推定試験も標準養生となる。

(4)「標仕」における構造体コンクリートの強度と供試体の強度の差を考慮した割増(㊖F)の考え方は、設計者の判断により特記に示されるものとなっている。

工法の特性.jpg

【 場所打ちコンクリート杭 】

 ・アースドリル工法
 ・リバース工法
 ・オールケーシング工法

一般事項
(1)工法の概要
 各工法の特徴
①アースドリル工法

アースドリル掘削機.jpg
この工法は、上記のような機械を用い、下記のような工程により杭を築造する。

アースドリル工法1.jpg
アースドリル工法2.jpg

②リバース工法

リバース掘削機.jpg
この工法は、上記のような機械を用い、下記のような工程により杭を築造する。

リバース工法1.jpg
リバース工法2.jpg

③オールケーシング工法

オールケーシング掘削機(揺動式).jpg
オールケーシング掘削機(回転式).jpg
この工法は、上記のような機械を用い、下記のような工程により杭を築造する。
オールケーシング工法1.jpg
オールケーシング工法2.jpg

(2)各工法の施工機械と近接建物等との標準的な距離があるので注意する。

アースドリル必要距離.jpg
リバース工法必要距離.jpg
オールケーシング必要距離.jpg
試験杭の施工時における検査項目.jpg

試験杭
(1)本杭を施工するに当たり、施工機械や各種安定液の適否、土質状態、地下水位及び被圧水等の有無、施工時間、支持地盤の確認等の種々の調査を行い、以後の本杭の参考とするために試験杭の施工を行う。

(2)試験杭の調査項目(参考)

試験杭の施工時における検査項目.jpg


アースドリル工法

(1)掘削機の据付け
(イ) 掘削機の据付けは、その作業地盤の耐力に応じて、道板、鋼板、砂利等を敷き、作業中に機械が傾斜することを防ぐ(機種によっては90tを超えるものがある。)。

(ロ) ケリーバーの中心を杭心に正確に合わせ、機体を水平に据え付ける。

(2)掘削
(イ) 最初のうち掘削孔が鉛直になるまでは慎重に掘削を行い、表層ケーシングを鉛直に建て込む。

(ロ) 土質に応じバケットの回転速度を調節しながら掘削を進める。掘削された土砂を常に観察し、崩壊しやすい地盤になったら安定液を用いる。尚、バケットにリーマーを用いる拡幅掘削は、表層ケーシング建込み深度までとし、それ以深の掘削にはリーマーを用いてはならない。

(ハ) 掘削深さが所定の深度に達し、排出される土により予定の支持地盤に達したことが確認されたらスライム処理をして、検測を行う。なお、検測とは、検測テープにより掘削深度を測定することであり、孔底の2箇所以上で行う。

(ニ) 支持層の確認は、バケット内の土砂を、土質柱状図及び土質資料を対比して行う。また、その際にケリーバーの振れや回転抵抗等も参考にする。

(ホ) 掘削孔の側壁の確認を、超音波などに行う装置がある。なお、この装置を使用して確認を行う場合は、特記で指定される。

(3)安定液
(イ) アースドリル工法における孔壁保護は、通常安定液によって行う。

(ロ) 安定液には、ベントナイト系安定液とCMC系安定液があり、どちらも使用する材料は同じであるが、その違いはベントナイトとCMCの配合率の違いである。

(ハ) (ロ) の安定液の選択と配合は、土質や地下水条件を考慮して決める。また、適時試験を行って安定液を調整し、安定液の劣化を防ぐことが大切である。次の表は、砂質土の場合の安定液の配合例である。
砂室土の場合の安定液の配合例

砂室土の場合の安定液の配合例.jpg
 表4.5.3

(ニ) 安定液の性質
①安定液の主な材料
 ・清水:水道水程度
 ・ベントナイト:粘土鉱物の一種で、水に混合して孔壁保護及びスライム沈降防止に効果がある。
 ・分散剤:液の劣化を防ぎ、繰返し使用を可能にする。
 ・CMC:ベントナイト液に作用して、造壁性・沈殿防止効果を良好にする。( Carboxy Methyl Cellulose)

②繰返し使用する場合の安定液の管理基準は、実状に応じたものとするが、その例を以下に示す。
 表4.5.4

③標準比重は、清水とベントナイトのみの新液の比重とし以下に示す。
ベントナイト混合率(%) 比重
    4        1.025
    6        1.035
    8        1.045
    10        1.055
④必要粘性とは、対象地盤に必要とする粘性をいう。

⑤作液粘性とは、新しく作った安定液の粘性をいう。アースドリル工法では、安定液を繰返し使用すると粘性が小さくなる例が多いので、一般的には作液粘性は必要粘性より大きくする。

⑥安定液には、適当な量と質の分散剤が添加されていることを原則とする。


リバース工法

(1)掘削機の据付け
(イ)サクションポンプユニットとロータリーテーブを切り離して作業できる。(本体と10m程度切り離した)ため、杭施工場所に特別な養生を必要としない。

(ロ)スタンドパイプの建込みを行う。スタンドパイプは、表層地盤の崩壊防止及び自然地下水に対し2.0m以上の水頭差を保持し、静水圧により孔壁の崩壊を防止するために用いるもので、建込みは油圧ジャッキ又はバイブロハンマーにより行う。
スタンドパイプの径は、孔径より150~200mm大きいものとする。また、根入れは地下水位、表層の土質の軟弱度により異なり、スタンドバイプ内の水圧で周囲の軟弱土が外側に移動あるいはパイピングを起こさないだけの深さとする。

(2)掘削
(イ)この工法は、静水圧 0.02 N/mm2以上に保つことにより孔壁の崩壊を防ぐ工法であるので、掘削に際しては地下水を確認し水頭差を2.0m以上保つように十分注意する。

オールケーシング工法

(1)掘削機の据付け
(イ)掘削機の据付け地盤の補強については、(c)(1)による。

(ロ)揺動式の場合の掘削土砂の排出は、機械の前方に限られるので、隣地より杭までの距離がない場合は作業動線に注意しなければならない。

(ハ)ケーシングチューブは、杭心に合わせて直角2方向からトランシット又は下げ振りでチェックして鉛直に建込む。

(ニ)ファーストチューブの建て込みは、水平精度と鉛直精度に直接影響を及ぼすので、次のような方法で行う。

①杭心を正しくセットさせるため下記のような治具を用い、ファーストチューブをセットする。

1)イとロを組み合わせてハのような定規をつくる
2)ハのa部を杭心の仮杭に合わせ、bを地盤に差し込み固定する。
3)イを取り外し、ファーストチューブを据え付ける。


②使用するファーストチューブは、鉛直性の監視が容易に行えるよう6m程度の長さにする。

③ファーストチューブは、杭心に合わせ直角ニ方向からトランシット又は下げ振りで


(2)掘削
(イ)掘削は、ケーシングチューブを先に揺動又は回転圧入し、土砂の崩壊を防ぎながらハンマーグラブのより掘削する。掘削が鉛直にできるかどうかは、最初のケーシングチューブ1〜2本の建て込み状況によって決まる。

(ロ)被圧地下水によるボイリングを起こしやすい砂又は砂礫層の場合及び軟弱粘土層でのヒービングを起こしやすい地盤がある場合は、孔内に水を張り防止する。

(ハ)常水面以下に細かい砂層が5m以上ある場合は、ケーシングチューブの外側を伝って下方に流れる水の浸透流うあ揺動による振動によって、周囲の砂が締固められケーシングチューブが動かなくなること(ケーシングチューブが食われる)があるので注意する。

(ニ)掘削終了時、ファーストチューブ刃先を杭底面より先行させないように注意する。

(ホ)掘削深さが所定の深さに達し、排出される土から予定の支持地盤に達したことが確認されたら、スライムを処理し検測を行う。

(へ)支持層の確認は、ハンマーグラブでつかみ上げた土砂を土質柱状図及び土質資料と対比して行う。

(3)孔内水
オールケーシング工法では、掘削孔全長にわたりケーシングチューブを用いて孔壁を保護するため、孔壁崩壊の懸念はほどんどない。しかし、(2)(ロ)の場合や孔内水位と地下水位に水頭差がある場合は、掘削底周辺部の緩みの発生が想定されるので、孔内へ注水し水圧のバランスを図る。

スライム処理

(1)スライムとは、孔内の崩落土、泥水中の土砂等が孔底に沈殿、沈積したものである。この上にコンクリートを打ち込むと、荷重がかかったとき杭が沈下するので、スライムの処理は重要である。
このほか、スライムは強度を含めたコンクリートの品質低下、杭の断面欠損及び支持力低下の原因となる。

(2)スライムの処理には、一次処理と二次処理がある。一次処理は掘削完了直後に行うスライム処理で、二次処理はコンクリート打込み直前に行うスライム処理である。各スライム処理方法の例を、下記に示す。

(3)アースドリル工法のスライム処理は、一次処理をして底ざらいバケットにより行う。バケットは杭径より10㎝小さいものを用い、バケットの昇降によって孔壁が崩壊することのないよう緩やかに行う。

 鉄筋かご建込みの際の孔壁の欠損によるスライムや建込み期間中に生じたスライムは、二次処理としてコンクリート打込み直前に水中ポンプ方式又はエアーリフト方式等により除去する。

(4)リバース工法のスライム処理は、一次処理として掘削完了後ビットを孔底より若干引き上げて緩やかに空回しするとともに、孔内水を循環させて比重を下げ、鉄筋かごやトレミー菅建て込み期間中のスライム沈積量を少なくする。
 二次処理は、コンクリート打込み直前にトレミー菅とサクションポンプ等により孔底に沈積したスライムを除去する。

(5)オールケーシング工法のスライム処理は、ドライ掘削や孔内水位の低い場合は、堀りくずや沈殿物の量が少ないので、掘削完了後にハンマーグラブで静かに孔底処理(孔底のさらい)を行う。
 また、孔内水位が高く沈殿物の多い場合には、ハンマーグラブで杭底処理をしたのち、更に、スライムバケットにより行う。
 なお、コンクリート打込み直前までに沈殿物が多い場合は、二次処理として、エアーリフト方式等によりスライムを除去する。

排液及び排土処理

(1)掘削時には相当の量の排液がでるが、排液は沈殿槽あるいは直接真空ポンプ車に集め場外へ搬出して指定場所へ投棄するか、排液槽に収集し凝集剤を添加して、上澄と回収泥土とに分け、回収泥土を更に脱水処理等をして含水比を小さくし投棄する。

(2)掘削された排土は、含水比が大きい(50〜200%)ので敷地内に集積して、天日乾燥させ、その含水比を小さくする。更にセメントを添加して固形化する場合と、石灰と混合しその化学反応の熱を利用して水分を除去し固形化する場合がある。

(3)これらの排液及び排土処理にあたっては、「廃棄物の処理及び清掃に関する法律」の適用を受ける場合があるので、法律に従った処理が必要になる。
 この場合、元請業車は産業廃棄物の排出事業者に該当するので、処分の方法、形態、場所等を確認させたうえで、許可を取得している業車に委託して処理を行わせるようにする。

鉄筋の加工及び組立

(1)鉄筋はかご形に組み立てる。
主筋と帯線を溶接している例ば見られるが、点溶接は注意しても主筋が断面欠損をするおそれがあるので「標仕」4.5.3(a)では、主筋への点溶接は行わないこととしている。また、帯筋の重ねは、10d以上の片面溶接(両面の場合は5d)とする。補強リングは、主筋に断面欠損を起こさないように十分注意し堅固に溶接する。また、補強リングは、鉄筋かごの径により主筋の内、外周のいずれに取り付けてもよい。
なお、鉄筋の溶接に当たっては、原則として「標仕」5.2.3(c)による。

(2)溶接技能者は、7.6.3を参照する。

(3)溶接施工は、7勝6節による。