3章 土工事 1節 一般事項 

第3章 土工事 


01節 一般事項

3.1.1 適用範囲

(a) この章は、建築物の建設工事に伴う根切りや地下掘削後の埋戻し、建物周辺の盛土等の土工事並びに山留め工事を対象とするもので、大規模な敷地造成工事等は対象としていない。

(b) 作業の流れを図3.1.1に示す。

図3.1.1 土工事の作業の流れ

(c) 施工計画書の記載事項は、おおむね次のとおりである。
なお、赤文字を考慮しながら品質計画を作成する。

① 工程表(山留め設置、根切り、埋戻し、山留め撤去等の時期)
② 山留めの工法及び安全を確認できる構造計算書(荷重、振動等に対する安全性の確認等)
③ 根切りの工法(順序、掘削機の種類と能力、予定搬出土量等)
④ 残土の処理方法(場外処理の場合は、地番、距離、処分地の種類等)
⑤ 法勾配並びに法面の養生方法及び法面の滑動のおそれがある場合の観測方法
⑥ 排水計画(排水溝の位置、釜場の位置、地下水の状況、揚水ポンプ能力と台数、台風あるいは停電時の対策、揚水停止時期の検討、流末の処置)
⑦ 埋戻し土の種類、締固め方法及び余盛り高さ
⑧ 安全管理対策(3.1.3の具体的実施方法及び関連対策等)
⑨ 公害対策(3.1.3の具体的実施方法等)
⑩ 作業のフロー、管理の項目・水準、方法、品質管理体制・管理責任者、品質記録文書の書式とその管理方法等

3.1.2 基本要求品質

(a) 一般に根切りの寸法や形状については設計図書に示されることはないが、法面の勾配等は、その掘削深さや土質等によって労働安全衛生法等によって定められている。したがって「形状及び寸法が所定のもの」としては、これらに基づき安全性を確保できるように、具体的な工法や安全対策等を提案させ、これによって施工させるようにする。

また、床付け面より下を深掘りしたり掘削機の刃先で乱したりして、地盤をかく乱すると、上部構造に沈下等の悪影響を与えるおそれがある。このため、掘削に当たっては床付け面をいかにかく乱しないような工法を採用するのか、また、もし万一床付け面を乱した場合の処置方法も含めて品質計画として提案させるようにするとよい。ここで床付け地盤が設計時に想定した条件と異なる場合は、設計担当者と打ち合わせて、処理方法を検討し、必要に応じて「標仕」1.1.8による協議を行い処理する。

(b) 埋戻しや盛土の材料は、一般に天然のものであり、「標仕」表3.2.1による種別の同じものが指定されていても、工事現場により材料の品質性状は異なったものとなる場合が多い。

一般に、土の場合は、その種類や含水状態によって、適切な締固めの方法や使用する機器等が異なる。したがって最も適切な締固めの方法及び管理の基準や方法等を品質計画で定め、それに従って管理したことが分かるようにしておく。

3.1.3 災害及び公害の防止

(a) 災害防止のために、特に注意する必要のある事項は、次のとおりである。

(1) 周囲の建物等の安全の確保
(2) 地中埋設物等に対する確認及び処置
(3) 土砂の崩壊による危険防止のための次の観測、測定等

なお、危険箇所については、常時巡視する態勢が必要である。
① 周辺地盤、法面に発生するひび割れ
② 周辺地盤の沈下、移動
③ 湧き水、漏水
④ 山留めの土圧、変形

(4) 法面保護
法面保護の方法には、通常次のようなものがある。

① メッシュ入りモルタル吹付け
② モルタル吹付け
③ 短期間及び大雨に対してはシートによる覆い
④ 吹付けは種

(b) 公害防止のために、特に注意する必要のある事項は、次のとおりである。
(1) 騒音、振動の防止
生活環境の保全と建設工事の円滑化を図るため、住居が集合している地域、病院又は学校周辺の地域等で、設計図書に、低騒音型・低振動型建設機械を使用するよう指定された場合は、「低騒音型・低振動型建設機械の指定に関する規程」(平成9年7月31日建設省告示第1536号)により指定された建設機械を使用する必要がある。

(2) 建設副産物の処理
建設副産物については.1.3.8を参考に適切に処理する。

(3) 土壌汚染対策については.1.3.11(a)による。

(4) 近隣の水位の低下並びに油滴、塵あいの飛散による汚れの防止等の調査及び防護、養生の検討

(5) 工事現場以外(運搬途中、敷地周辺)の道路、排水路の土砂、泥水による汚れ等の防止及び堆積しておく埋戻し土の雨による流出るの防止

(6) 連搬車の事故防止
(i) 土砂等を運搬する車両は、交通事故の防止対策等からダンプカー協会に加入している車両を優先的に使用する(土砂等を運搬する大型自動車による交通事故の防止等に関する特別措置法(昭和42年法律第131号))。

(ⅱ) 工事現場へ出人りする際の事故防止に努める。

3章 土工事 2節 根切り及び埋戻し

第3章 土工事 


02節 根切り及び埋戻し

3.2.1 根切り

(a) 根切りの留意点
根切りに先立ち処置する必要のある事項は、おおむね次のとおりである。

(i) 地盤調査の結果による地層及び地下水の状況把握
(ii) 近接した建物等への影響の有無(2.2.1 (a)(iii)参照)
(iii) 地中埋設物(2.2.1(a)(ii)参照)で根切りに掛かるもの及び周辺にあるものの移設養生等の処置
(iv) 山留めの安全性の確認(建設工事公衆災害防止対策要綱(建築工事編)(平成5年1月12日建設省経建発第1号)では、根切り深さ1.5 mを超える場合には、原則として山留めを設けるとしている(同要綱第45参照)。)
(v) 機械掘削を行う場合の転倒、転落の防止
(vi) 構台を架設した場合の荷重、振動に対する安全性の確認

(b) 根切りの概要
(1) 根切りの種類
(i) 総掘り :地下室等がある場合に建物全面を掘る。
(ii) 布掘り :連続基礎等の場合に帯状に掘る。
(iii) つぼ掘り:独立基礎等の場合、角形又は丸形に掘る。

(2) 根切り深さ
根切り深さは、砂利地業等の突固めによるくい込み量〈突代、突べり〉(土質等により0 ~ 30mm位まで)を見込んだ深さとする。

(3) 根切り範囲の計画
根切り範囲を定めるには、山留め、コンクリート型枠の組立、取外し等の作業がある場合においても作業が十分できるよう、山留めと型枠組立材料との間に作業者が入れる間隔を見込んでおく。その間隔は、通常の場合は図3.2.1のように、布掘りでは基礎幅から300~600mm、総掘りの場合は 1m 程度とする。ただし、除去の必要のないラス型枠材料等による場合や、連続地中壁やソイルセメント壁による山留め壁を直接外型枠として使用する場合等ではこの限りではない。


(イ)布掘りの場合


(ロ)総掘りの場合(外型枠が必要な場合)


(ハ)総掘りの場合(外型枠がない場合)
図 3.2.1 根切り範囲

(4) 根切り工事の計画
根切り工事では、掘削と山留め支保エの架設がバランスよく、かつ、 タイミングよく行われることが非常に大切である(図3.2.2参照)。また、掘削の実施においては、山留めの設計条件を十分に確認し、設計条件に合致した方法により施工を行うとともに安全を確認して工事を実施する必要がある。


(イ) バランスのとれた掘削方法


(ロ) バランスがくずれやすい掘削方法
図3.2.2 掘削方法

(5) 根切り底の施工
根切り底は、水平にしなければならないのは当然のことであるが、機械掘削をする場合には所定の深さより深く掘り過ぎないこと及び地盤面を乱さない(荒らさない)ことに注意する必要がある。深く掘り過ぎたり、乱したりした場合は、砂地盤の場合には、ローラー等による転圧や締固めによって自然地盤と同程度の強度にする。シルトや粘性土等の場合には、自然地盤以上の強度をもつ状態に戻すということは非常に困難なので、砂質土と置換して締め固め、自然地盤と同程度の強度にする処置が必要となる。また、砂質土による置換では強度の回復が困難と判断される場合は、セメント、石灰等の改良材を用いて地盤の改良を行う方法もあるので、地盤強度の確保の方法等について設計担当者と打ち合わせる。

一般的なバケットを用いた機械掘削では、通常床付け面より300~500mmの位置より手掘りとするか、バケットに平板状の特殊なアタッチメント(鋼板等)を取り付けたもので、根切り底が乱されるおそれのないものとして、機械を後退させながら施工する(図 3.2.3参照)。杭間ざらいでは、杭体に損慟を与えることや地盤の乱れを生じることのないよう、小型の機械に変更するなどし、十分に注意して施工を行う。

また、地下水処理が十分でない場合、根切り底が乱されるため、地下水の処理は十分に行う。


図 3.2.3 機械掘削の例

(6) 根切り底の検査
根切り底は、レベルチェック及び地盤状態の検査をしたのちに、捨コンクリートや基礎スラプの施工にかからなければならない。レベルチェックは、レベルを用いたり、遣方に水糸を張りスケールを用いるなどして行う。測定部分の大きさにもよるが、つぼ掘りは周囲4点と中央1点、布掘りは2 ~ 3 mごとに1点、総掘りは 4mごとに1点程度を目安として実施することが望ましい。地盤の状態(根切り底の乱れ及び地層の種類・強さ等)に関する検査は、通常、床付け地盤が設計図書、地盤調査報告書に示された地層、地盤に合致していることを土質試料等を参考に目視によって確認するが、その確認が難しい場合には「標仕」1.1.8の規定に基づき土質試験や原位置試験等の適切な試験によって確認する。

参考として地盤の状態の簡易判別法を示す(表 3.2.1 参照)。

表 3.2.1 地盤の状態の簡易判別法( JASS 3(一部修正)より)

(c) 掘削深さと法面の勾配

(1) 法面の勾配
法付けオープンカット工法により掘削を実施する場合、法面の勾配は、土の安息角や粘着力により決まるが、特に粘着力は土の含水量によっても変化する。切土における法面勾配の目安として表 3.2.2 が示されている。法面の勾配は、規模が大きくなれば安定計算によって安全を確かめて決定する。また、法面及び法尻は安定勾配以下であっても、降雨・乾燥のくり返しにより崩れやすくなるので、存置期間中に異常を生じないように、排水・養生を行う。地下水位が浅い場合は、排水溝、集水桝等による地下水処理を行う(図 3.2.4参照)。


(イ)ウェルポイントによる地下水位の低下


(ロ)法面の崩壊防止


(ハ)砂粒子の流出防止


(ニ)法面の養生
図 3.2.4 法面の排水、養生の例( JASS 3より)

表3.2.2 切土に対する標準法面勾配(山留め設計施工指針より)

(2) 手掘り掘削時の規定
手掘りとする場合は、労慟安全衛生規則に勾配と高さが定められているので、これらを基に安全性を確保しながら掘削する(表 3.2.3参照)。

表3.2.3 手掘りによる掘削作業での掘削面の勾配の基準(労例安全衛生規則)

(d) 寒冷期における施工時の注意

(1) 施工上の留意点
寒冷地の冬期施工に当たって、特に注意をしなければならないものに凍結現象がある。凍結した土は強度的にみて良質な地盤と間違えやすいが、氷が溶けると体積が減少し、沈下現象に結びつく。したがって、凍結させないような施工管理が必要である。

(2) 凍結時の対策
床付け地盤が凍結した場合、この土は乱された土と同様に扱い、良質土と置換するなどの処置を行う。

(e) 土工事用機械
土工事に用いられる主な使用機械を、表 3.2.4に示す。また、根切り用の掘削機械の種類を図 3.2.5に示す。

施工に用いる機械については、近接住民の生活環境の保全の必要性のある場合について、昭和51年に「建設工事に伴う騒音振動対策技術指針」(昭和62年全面改正)が定められているので、これによって施工する。

表 3.2.4 土工事作業と主な使用機械

図 3.2.5 根切り用掘削機械の種類

3.2.2 排 水

(a) 地下水処理工法の概要

地下水処理工法には、大別して排水工法、止水工法、リチャージ工法があり、図 3.2.6 に示すようにそれぞれ多くの種類がある。工法の選定に当たっては、必要とする揚水量・排水を行う地下水の深度等の目的に対する適合性・施工性・工期・コストのほか、揚水による地下水位低下に伴う井戸枯れや地盤沈下等の周辺への影響を考慮しなくてはならない。多くの場合、止水工法は山留め工法に直接かかわるため地下水処理工法と山留め工法は同時に検討すべきである。

また、最近では周辺の井戸枯れや地盤沈下防止等を目的にリチャージ工法を採用することもある。


図 3.2.6 地下水処理上法の種類(山留め設計施工指針より)

(b) 排水工法
排水工法は、地下水の揚水によって水位を掘削工事に必要な位置まで低下させる工法で、地下水位の低下量は揚水量や地盤の透水性等によって決まり、通常、透水係数が 10-4cm/s程度より大きい地盤(帯水層)に適用される。

土粒子の径と排水工法の適用範囲を図 3.2.7に示す。

図 3.2.7 土粒子の径と排水工法の適用範囲(根切り工事と地下水より)

この排水工法を集水原理で分ければ、ウェル等の排水設備に流入する水を揚水する重力排水工法と、負圧等を利用して強制的に水を流入させ排水する強制排水工法とがある。現在よく用いられる工法は、釜場工法、ディープウェル工法、ウェルポイント工法及びバキュームディープウェル工法であり、工法は排水の実施位置及び必要とする揚水量等を考慮し決定する。

(c) 各種排水工法の特徴と注意点は次のとおりである。
(1) 釜場工法
根切り部へ浸透・流水してきた水を、釜場と称する根切り底面よりやや深い集水場所に集め、ポンプで排水する最も単純で容易な工法である(図 3.2.8参照)。釜場は、根切りの進行に合わせて下げるとよい。

また、この工法の注意点は次のとおりである。

① 湧水に対して安定性の低い地盤への適用は、ボイリングを発生させ地盤を緩めることにつながるので好ましくない。

② 主として、雨水を処理する場合は、根切り底に排水溝(明きょ)を設けるなどして雨水を集水桝に集めてポンプで排出する。この場合、集水桝は 図 3.2.9 のように基礎に影響を与えない場所に設ける。

③ べた基礎のように上部構造の応力を地盤に伝えるために設けた基礎スラプ下の地盤は、その影評範囲を地下水で乱してはならない。床付け地盤面に地下水が流入する場合には適当な排水処置をとり、地下水により基礎スラプ下の床付け地盤の支持力が低下しないようにしなければならない。

④ 釜場にはフィルターを設け、地盤中の砂分を揚げないようにしなければならない。


図 3.2.8 釜場工法


図 3.2.9 集水枡の位置

(2) ディープウェル工法
根切り部内あるいは外部に径500~1,000mmで帯水層中に削孔し、径300~600 mmのスクリーン付き井戸管を設置してウェルとし、水中ポンプあるいは水中モーターポンプで帯水層の地下水を排水する工法である(図 3.2.10 参照)。砂層や砂礫層等、透水性のよい地盤の水位を低下させるのに用いられる。この工法は、ウェル1本当たりの揚水量が多く、また、深い帯水層の地下水位を大きく低下させることが可能であるなどの特徴があるが、(4)のウェルポイント工法等に比べて設置費用が多額である。したがって、必要排水量が非常に多い場合、対象帯水層が深い場合、帯水層が砂礫層であるなどによりウェルポイント工法では処理できない場合、ウェルポイントの設置によってだめ工事(手直し工事)が多くなる場合等に採用すると有効である。

また、ディープウェル工法による揚水は、周辺地下水位も大きく低下させることが多く.周辺の井戸枯れや地盤沈下等を生じるおそれがあるので、採用に当たってはこの点を考慮しなくてはならない。


図 3.2.10 ディープウェル工法

(3) 明きょ・暗きょ工法
明きょ工法は排水溝により集水し、暗きょ工法は地中に設置した暗きょにより集水し、排水する方法をいう。

(4) ウェルポイント工法
根切り部に沿ってウェルポイントという小さなウェルを多数設置し、真空吸引して揚排水する工法であり( 図 3.2.11参照)、透水性の高い粗砂層から低いシル卜質細砂層程度の地盤に適用される。可能水位低下深さはヘッダーパイプより4~6m程度である。1本当たりの揚水量は土質によって異なるが、通常10~20ℓ/min程度、場合によっては50ℓ/minになることもある。

また、この工法の注意点は次のとおりである。

① 地下水位低下により、周囲地盤が多少とも沈下するため、計画時にその影響を調査・検討する。

② 地下水をくみ上げるため、周囲の井戸水等の水位低下や井戸枯れを生じることもあるので事前に調査する必要がある。

③ ポンプが故障した場合、水位の上昇により山留め崩壊等の大事故になるおそれがあるので、予備ポンプの設置が必要である。

④ 排水により、根切り底・法面・掘削面に異常が起こらないように排水処理を確実に行う。

⑤ ウェルポイントの排水を停止する場合は、地下水位の上昇により、建物、地中埋設物等の浮上がりによる破壊、損傷等を起こさないように、排水停止時期について十分に検討する。

⑥ 気密保持が重要であり、パイプの接続箇所で漏気が発生しないようにする。


図 3.2.11 ウェルポイント工法

(5) バキュームディープウェル工法
ディープウェルに真空ポンプを組み合わせた排水工法で、帯水層の透水性が低い場合やディープウェルの設置方法が悪いため、水位低下しにくい場合に採用することが多い。ウェル内を負圧にして地下水を吸引するため、ウェルの気密性を保つ必要がある。

(d) 止水工法
止水工法は、図 3.2.12 に示すように、根切り部周囲に止水性の高い壁体等を構築し根切り部への地下水の流入を遮断する工法で、大別すると地盤固結工法・止水壁工法及び圧気工法がある。

盤ぶくれ防止のために被圧帯水層を遮断したり、山留め背面地盤に砂質土層があってこれを止水する必要のある場合や、地下水の低下によって周辺の井戸枯れや地盤沈下、あるいは地下水塩水化等が問題になり排水工法が適用できない場合等に、止水工法が採用される。更に、下水道・水路等の放流場所がない場合や、放流場所の可能放流(排水)量が小さく排水工法が採用できない場合、下水道料金や排水工法の設備設置費のために止水工法を採用した方が低コストで済む場合等にも採用される。また、現場条件やコスト等から止水工法と排水工法を併用する場合もある。

止水工法としてよく用いられるのは、止水壁工法と地盤固結工法であり、工法選定の際の主な注意点は次のとおりである。

① 止水壁は山留め堅としても用いることが大部分であり、設計の際はこの点を考慮しなくてはならない。

② 工法によって施工深度や適用地盤等が異なり、また、敷地条件によって採用できない場合がある。

③ 一般には仮設であるが、止水矢板工法を除き撤去できない。


図 3.2.12 止水工法による地下水処理

(e)リチャージ工法
リチャージ工法は復水工法ともいい、ディープウェル等と同様の構造のリチャージウェル(復水井)を設置して、そこに排水(揚水)した水を入れ、同一のあるいは別の帯水層にリチャージする工法である(図 3.2.13参照)。この工法は、周辺の井戸枯れや地盤沈下等を生じるおそれがある場合の対策として有効な工法である。

本工法の注意点を次に示す。

① 同一帯水層にリチャージする場合、排水工法だけを採用する場合に比べて必要排水(揚水)量が増加するので、ディープウェル等の排水設備も増える。その程度はリチャージウェルが揚水井に近いほど多くなる。したがって、リチャージウェルは揚水井とできるだけ離す方が効果的である。

② 山留め壁の根入れ以浅の帯水層けリチャージする場合、山留め壁への側圧(水圧)が増加するので検討が必要となる。

③ リチャージ量は、水中の鉄分、細粒分のほか、バクテリア等によって目詰りし、次第に減少する。したがって、必要に応じてリチャージウェルの洗浄が必要である。


図 3.2.13 リチャージ工法の例(根切り工事と地下水より)

3.2.3 埋戻し及び盛土

(a) 埋戻しに当たっては、埋戻しが不十分な場合沈下が生じ、建物周辺の外構や埋設管等に影響を及ぼす可能性がある。

施工に当たっては、埋戻し材料の選定と締固め管理が重要となる。

(b) 埋戻し部の型枠材等の撤去
埋戻しに先立ち、埋戻し部の型枠材等を撤去したのち、埋戻し作業を実施する。これは、型枠材を存置すると腐食により地盤の沈下を生ずる場合があるためである。なお、腐食に伴う沈下の発生のおそれのない型枠材としてはラス型枠材料等があり、これを使用した場合には撤去の必要はない。

(c) 材料及び工法等
(1) 埋戻し及び盛土の種別等
「標仕」では、埋戻し及び盛土の種別を、土の種類とそれに適した工法の組合せとして「標仕」表 3.2.1のように区分し、その種別を特記することとしている。
このうちA種は、山砂で一般的には水締めのきく砂質土を想定している((3)参照)。

また、B種は、当該現場で発生した根切り土の中で、有機物、コンクリート塊等を含まない良質土を想定しているが、このような良質の発生土が埋戻し等に必要な量として不足する場合は、設計担当者と打ち合わせ、必要に応じて「標仕」 1.1.8による協議を行う。

C及びD種については、建設発生材の有効活用が社会的命題であり、積極的に使用することが望ましい。

国土交通省では、建設工事に伴い副次的に発生する建設汚泥の処理に当たって、基本方針、具体的実施手順等を示すことにより、建設汚泥の再生利川を促進し、最終処分場への搬出量の削減、不適正処理の防止を図る目的から、「建設汚泥の再生利用に関するガイドライン」(平成18年6月12日)を作成した。

このガイドラインは、国土交通省所管の直轄事業に適用するとともに、その他の事業においてもガイドラインに準拠して建設汚泥を取り扱うことを期待しているものであるが、環境基本法に基づく土壌汚染対策法に定める特定有害物質の含有量基準に適合しない建設汚泥は対象外としている。

なお、上記以外として「標仕」には規定されていないが、最近では、建設発生土に水や泥水を加えて泥状化したものに固化材を加えて混練した流動化処理土が用いられる場合がある( JASS 4参照)。

(2) 埋戻し土の性状
埋戻し土には腐食土や粘性土の含有量が少なく、透水性の良い砂質土を用いるのがよい。また、均等係数が大きいものを選ぶ。均等係数の算定は土の粒度試験結果の片対数用紙の対数目盛に粒径を、算術目盛に通過質量百分率をとって、図 3.2.14のような粒径加積曲線として描く。そしてその性質を定量的に示す係数として、均等係数 Ucと曲率係数 U’c を次式から求める。


図 3.2.14 粒径加積曲線

(3) 埋戻し及び盛土材料の粒度組成
山砂、川砂及び海砂の粒度組成の一般的な比較は表 3.2.5のようになり、埋戻し土には山砂が最も適している。これは埋戻し土としては、分離作用を強く受けて均一粒子となっている砂(海砂等)よりも砂に適度の礫やシルトが混入された方が大きい締固め密度が得られるからである。
また、使用する埋戻し土については、必要に応じて粒度試験等を実施するのが望ましい。表 3.2.6 に埋戻しに適した材料の粒度と性質を示す。

表 3.2.5 山砂、川砂及び海砂の一般的な粒度特性

表 3.2.6 埋戻しに適する材料の粒度と性質( 山留め設計施工指針より)

(4) 土質と締固め方法
締固めは、川砂及び透水性のよい山砂の類の場合は水締めとし、透水性の悪い山砂の類及び粘土質の場合はまき出し厚さ約300mm程度ごとにローラー、ランマー等で締め固めながら埋め戻すのが原則である。埋戻し時には、建物躯体のコンクリートが締固めを行うのに必要な強度を発現していることを確認する。建築物周囲の深い根切りの部分は、機械で締め固めるのは困難なことが多いので、整地後の地盤沈下を防止するには、川砂又は透水性のよい山砂の類を使用し、水締めをする必要がある。設計屈瞥の指定が適当でないと思われる場合は、設計担当者と打合せを行い決定する。

(5) 土の含水と締固め
土は、ある適当な含水比のとき最もよく締め固まり、締固め密度を最大にすることができる。このような含水比を最適含水比という。

(6) 寒冷期の施工時の注意
凍結土を埋戻し、盛土や地均しの材料として使用すると、凍結土が浴けた際に、地表面に凹凸・舗装面や犬走りにひび割れ等が発生しやすくなるので、使用してはならない。

(d) 余盛り
埋戻し及び盛土には、土質による沈み代を見込んで余盛りを行う。余盛りの適切 な標準値はなく、表 3.2.7 は一つの参考値であるが、これにより推定することは容易でない。通常の埋戻し( 地下2階で幅 1m程度 )において、砂を用い十分な水締めを行う場合 50~100mm、粘性土を用い十分な締固めを行う場合、100~150mm程度が余盛りの目安と考えられるが、重要な盛土では、試験により余盛りを決めるのがよい。

表 3.2.7 余盛りの参考値

3.2.4 地 均 し

地均しは、均しを行う地表面の不陸を修正し、草木の除去及び清掃をして、一様にかき均したのち、仕上げ面を一様になじみ起こしをして、良質土をまきかけ、歩行に耐えうる程度に締め固める。ここで、地表面は施工時に工事車両の走行や作業通路として締め固められており、地均し面の不陸の発生要因となるため、なじみ起こしは確実に実施する。また、寒冷期の施工に当たっては、凍結土を使用しないようにする。

3.2.5 建設発生土の処理

(a) 建設発生土処理についての注意事項
建設発生土を搬出する際、工事用車両の作業所出入口には、標識・点滅灯等を設置し、第三者に工事用車両の出入りを明示するほか、車両誘導員を配置して人身事故の防止及び作業所周辺道路に交通渋滞を生じさせないよう努力する必要がある。

また、建設発生土の運搬に当たっては過積載防止に努めるとともに、運搬中に土砂がこぼれ落ちないようにシート等を掛けて養生する。タイヤに付着した泥土は作業所内で洗浄し、通行する逍路を汚損しないようにする。

なお、平成14年に制定された土穣汚染対策法により、「その土地が特定有害物質によって汚染されており、当該土地の形質の変更をしようとするときの届出をしなければばらない区域」として都道府県知事が指定した区域内で土工事等を行う場合は、施行方法等の計画を事前に知事に届け出ることとされているので注意する (1.3.11 (a)参照)。

(b) 建設発生土処理に関する法規
建設発生土の運搬は、「土砂等を運搬する大型自動車による交通事故の防止等に関する特別措置法」に基づき、地方運輸局長から表示番号の指定を受けたトラックとする必要がある。また、「廃棄物の処理及び清掃に関する法律」並びに各地方公共団体による規制・指導に基づき建設発生土処理計画を作成し、これに従って適切に処理する。

なお、これらのほかに、(一財)土木研究センターの「建設発生土利用技術マニュアル」等が参考となる。

(c) 建設発生土の再利用
国土交通省が推進している「建設発生土情報交換システム」により、近隣地域での建設発生土や購入希望土等の情報がデータベース化されている。これを活用することにより、建設発生土の再利用を図ることが望ましい。
また、建設発生土の再利用については、平成3年建設省令第19号に技術基準が示されている。その抜粋を次に示す。

建設業に属する事業を行う者の再生資源の利用に関する判断の基準となるべき事項を定める省令
(平成3年10月25日 建設省令第19号 最終改正 平成13年3月29日)
(建設発生土の利用)
第4条
建設工事事業者は、建設発生土を利用する場合において、別表第1の上欄に掲げる区分に応じ、主として下欄に掲げる用途に利用するものとする。
2 前項の場合において、建設工事事業者は、建設発生土の品質等に関する技術的知見に基づき、建設工事の施工又は完成後の工作物(建築物を含む。以下同じ。)の機能に支障が生じないよう、適切な施工を行うものとする。
3 建設工事事業者は、建設発生土の利用に当たって、あらかじめ建設発生土の発生又は利用に係る必要な情報の収集又は提供に努めるものとする。

3章 土工事 3節 山留め

第3章 土工事 


3節 山留め

3.3.1 山留めの設置

(a) 山留めの計画及び施工
(1) 山留めの概要
山留めは、地下構造物、埋設物等の施工中、掘削の側面を保護して周囲地盤の崩壊や土砂の流出を防止するためのもので、敷地に余裕のある場合、あるいは掘削が簡易な場合は、掘削部周辺に安定した斜面を残し、山留め壁等を設けない工法(図3.3.1 法付けオープンカット工法)とするのが一般的である。建築現場の周囲の状況、掘削の規模、地盤の状態等により、前記工法ができない場合は、山留め壁又は支保工による山留めを設置する。

山留めにかかる荷重としては、土圧、水圧、載荷荷重等があるが、それらを仮定するには、土質、地下水位、周辺の建築物や地盤上の荷重、周辺の状況等により異なり、種々の計算方法がある。


図3.3.1 法付けオープンカット工法〈索掘り、空掘り〉

(2) 山留めの種類
(i) 山留め工法の分類
山留めの種類には自立式,切張り式地盤アンカー式等種々のものがある。山留め工法の種類と特徴を表3.3.1に示す。

表3.3.1 山留め工法の種類と特徴(その1)(山留め設計施工指針 JASS 3(一部修正)より)

表3.3.1 山留め工法の種類と特徴(その2)(山留め設計施工指針・JASS 3(一部修正)より)

(ii) 山留め壁の種類
建築工事で用いられる山留め壁は、図3.3.2に示すように多くの種類がある。適切な工法を選択するためには地盤条件、掘削の規模、山留め壁に要求される剛性・止水性、振動・騒音等の公害、工期・工費等を総合的に検討する必要がある。これらの条件と山留め壁の選定基準の目安を表3.3.2に示す。山留め壁の種類と特徴をまとめたものを表3.3.3に示す。


図3.3.2 建築工事で多用される山留め壁の種類(山留め設計施工指針より)

表3.3.2 与条件に対する山留め壁選定基準の目安(山留め設計施工指針より)

表3.3.3 山留め壁の種類と特徴(山留め設計施工指針より)

従来、山留め壁としては、親杭横矢板壁、鋼矢板壁くシートパイル>等の打込み式によるものが一般的であった。しかし、近年では、振動・騒音、周辺地盤の沈下等の山留め壁の施工に伴う公害の防止や、掘削工事に伴う周辺地盤・構造物等への影響を防止するため、公害が少なく、また、比較的山留め壁の剛性・止水性に優れたソイルセメント柱列壁等が多く用いられるようになった。

ソイルセメント柱列壁工法は、注入液として用いるセメント系注入液を原位置土と混合・かくはんし、オーバーラップ施工した掘削孔にH形鋼等の心材を適切な間隔で挿入することにより柱列状に設置した山留め壁である。

なお、心材は、山留め壁の設計条件に応じ挿入間隔を決定する。

オーガーの形状や軸数は種々あるが、軸数が多ければ遮水性能の確保が有利であり、施工効率も上げられるなどの特徴もある。

心材としては、H形鋼・I 形鋼・鋼管等が用いられる。ソイルセメント柱列壁では通常450~550mm径のものが多く用いられる。また、大深度の掘削工事においては、1m程度の径を有するものが用いられることもある。ソイルセメント柱列壁の特徴を次に示す。

1) 騒音・振動が少ない。
2) かくはん翼のラップ施工により構築されるので、止水性が高い。
3) 泥水処理が不要で、排出泥土も他のRC山留め壁に比べて少ない。
4) 注入液の調合については、固化強度のばらつきが大きく、混合試験による事前検討が必要である。圧縮強度は、一般的に粗粒土になるほど大きいが、粒度分布・コンシステンシー・有機物含有量等により影響されるので十分注意する必要がある。
5) 掘削に伴う周辺地盤の緩みが少ないため、近接構造物に与える影響が少ない。

(iii) 山留め支保工の種類
山留め支保工は、掘削時に山留め壁に作用する土圧・水圧を安全に支えるとともに、山留め壁の変形をできるだけ小さくして周辺地盤並びに構造物に有害な影響を及ぼさないことを目的として架設する。したがって、山留め支保工の選定に当たっては、土圧・水圧の大きさのみならず、山留め壁との適切な組合せや、施工条件等を十分考慮しなくてはならない。通常の掘削工事において用いられる山留め支保工の種類を図 3.3.3に示す。また、これらの特徴を表 3.3.4に示す。


図 3.3.3 山留め支保工の種類と分類

表 3.3.4 山留め支保工の種類と特徴(山留め設計施工指針(一部修正)より)

① 鋼製支保工
鋼製支保工は、山留め壁に作用する土圧・水圧を鋼製腹起し、切張りの水平材で支える工法であり、市街地の掘削工事では最も実施例が多く信頼性が高いオーソドックスな方法である。現在ではほとんどリース材で施工されており、また、どの種類の山留め壁とも組合せが可能で、適用範囲が広い(図 3.3.4参照)。


図 3.3.4 鋼製支保工による山留め架構(山留め設計施工指針(一部修正)より)

② 地盤アンカー
地盤アンカー工法は、切張り工法では安全性に問題があるような不整形な掘削平面の場合、敷地の高低差が大きくて偏土圧が作用する場合、掘削面積が大きい場合、山留め変形を極力少なく抑えたい場合等には有効である。

地盤アンカー工法は、一般に切張りで支えている土圧や水圧を、山留め壁背面の地盤中に設けた地盤アンカーで支える工法である(図 3.3.5参照)。アンカーとなるPC鋼材を背面土にどのように定着させるかによって、工法が異なってくる。図 3.3.6に親杭横矢板工法の場合の地盤アンカー用腹起しの例を示す。


図 3.3.5 地盤アンカー工法の使用例(建築地盤アンカー設計施工指針・同解説より)


図 3.3.6 地盤アンカー用腹起し例(建築地盤アンカー設計施工指針・同解説より)

地盤アンカー工法の特徴と注意点等を次に示す。

1) 切張りがないため大型機械を使用することができ、施工効率が上がる。

2) 傾斜地等で片側土圧(偏土圧)となる場合の処理が容易である。

3) アンカーの設置に使用する機械は、地質調査に使用される程度の小型機であり、作業スペースが狭い所でも施工できる。

4) 山留め壁の背面地盤が軟らかい粘性土地盤の場合は、耐力があまり期待できず、定着長さが長くなり施工上の問題が発生しやすくなるので注意する。

5) 地中埋設物に十分注意して施工する必要がある。

6) 山留め壁は敷地境界近くに設置される場合が多いため、敷地から外にアンカ一部分がでる場合もある。この場合は、事前に隣地管理者等関係者の了解が必要となるので注意する。

7) 地盤アンカーの引抜き耐力は、全数について設計アンカーカの1.1倍以上であることを確認する(一般に山留め様にはプレストレスを導入する場合が多いので、この時点で耐力の確認が行われている)。

8) 山留め壁には鉛直力が作用するので、山留め壁は十分な鉛直支持性能を有する地盤に支持させる必要がある。

(iv) 薬液注入工法
薬液注入工法は、地盤の止水性又は強度増大を目的として、建築の山留め工事では主に補助工法として用いられる。小型のボーリングマシンで施工可能なため、施工場所の制約や地中障害物との干渉等の理由により止水壁の施工が困難な部分や、止水壁欠捐部の補修等に適用されている。薬液注入工法を用いる場合は、薬液による水質汚染のおそれがあるので注意しなくてはならない。また、山留め壁には注入圧が作用し、山留め壁が変位することもあるので注意する。

なお、薬液注入工法については、「薬液注入工法による建設工事の施工に関する暫定指針について」(昭和49年7月10日 建設省官技発第160号)、「薬液注入工法の管理について」(昭和52年4月21日 建設省官技発第157号)、「薬液注入工事に係る施工管理について」(平成2年4月24日 建設省技調発第110号の1)及び「薬液注入工事に係る施工管理等について」(平成2年9月18日 建設省技調発第188号の1)が定められているので、これに基づき施工及び管理を行うようにする。

(3) 山留め支保工(切張り式)の架設
山留め支保工の架設に当たっては、次の点に留意し施工を行うようにする。

① 支保工の架設は、施工図に基づき確実に行う。架設材の安全率は低くとってあるので、施工に当たっては組立順序、工法等に十分注意する。

② 支保工の架設、法面養生作業と掘削速度は,均衡を図りながら作業を進める。

③ 1段目の支保工架設前は、山留め壁の倒れに注意する。

④ 2段目の支保工を架けたら、1段目の腹起しと山留め壁の間に隙間ができていないか点検し、隙間があれば、くさび〈キャンバー〉をかうなどして外力が切張りに均等に加わるようにする。

⑤ 根切り面積の広いところでは、切張りが座屈しないよう水平精度に留意し、中間を適当な間隔の支柱で安全に支持する。

⑥ 支保工にできるだけ衝撃を与えないように工事を進める。特に、横からの衝撃は、座屈の原因となるので注意する。

⑦切張り、腹起しの曲がり、ねじれ、接合部及び交差部のUボルト、当て板溶接等による緊結状態に十分注意する。

⑧ 地下水の湧水量の増減に常時注意し、工事に支障のある場合は、関係者と協議し、工事の安全及び進捗を図る。

⑨ 山留め及び支保工は、常時巡回点検し、異状の発見に努める(3.3.2 (b)参照)。また、異常が発見された場合は、速やかに対策をとるとともに、関係者と協議する。

⑩ 切張りにプレロード(事前に側圧に対抗する力を切張りに導入しておくこと。図 3.3.7 ~9 参照)を導入する場合は、地盤条件、荷重条件、山留め設計図書及び山留め壁の応カ・変形、切張り軸力の計測結果等を総合的に検討し適切なプレロード量を設定する。また、プレロードの導入に際しては、切張り材の日射等による温度変化から生じる温度応力についても事前に検討し、切張り耐力の安全性を確認しておくことが望ましい。

次に、プレロードの加圧時には、軸力が平面的に均等に加わるように注意し、山留め壁の応カ・変形、切張り軸力等を計測するとともに、異状がないか点検する。特に、多段切張りによる支保工を用いる場合は、上段に架設されたり切張りの軸力が著しく低下しないよう留意する。


図3.3.7 切張りジャッキ施工例


図3.3.8 ジャッキ補強ピース施工例


図3.3.9 プレロード導入のための加圧装置の例

(b) 山留めの構造
山留めの構造は、掘削工事に伴う崩壊あるいは過大な変形が発生することがないよう、掘削工事時に作用する側圧に対し安全な構造とし、十分な強度と剛性を有するものとする。

山留め構造の計画は、(一社)日本建築学会「山留め設計施工指針」に設計及び評価方法が示されているので参考にするとよい。

(i) 山留めに作用する側圧
① 山留めに作用する側圧は、土質及び地下水位に応じ設定する。

②切張り及び腹起しの断面算定に当たっては、支保工の状態に応じて分布形を設定し、断面の算定を行う。

③ 構造物やその他の積載物に近接した山留めを計両する際には、①②のほかに、これらの近接物の影響を考慮した側圧評価を行い、山留めの検討を実施する。

④ 山留め壁、切張り、腹起し等は、強度及び変形量に対して、構造条件に適合した方法で検討するとともに、継手及び仕口部は、部材応力を無理なく伝達できる構造とする。

(ii) 山留め壁の許容応力度
山留め壁の材料の許容応力度は、各材料に対して設定された許容応力度を用いる。山留め壁に用いる材料の許容応力度は、「山留め設計施工指針」及び(一社)日本建築学会「建築地盤アンカー設計施工指針・同解説」に示されているので参考にするとよい。

3.3.2 山留めの管理

(a) 点検・計測管理
(1) 点検・計測管理の目的と要点
点検・計測管理の目的は、周辺地盤、隣接構造物、地中埋設物の沈下・移動及び土圧・水圧、山留め架構の応力、変形等を測定し、計画上の諸条件と比較検討して、周辺地盤の防害、隣接構造物の領斜・転倒、地中埋設物の損傷、ヒービング、ボイリング、山留めの傾斜・崩壊等の危険を事前に把握して、速やかに対処することである。

点検とは、目視及びスケール等による確認行為、計測とは、機械式,光学式測定機器を使用する簡易計測及び電気式測定機器を使用する計器計測による確認行為である。

点検・計測管理の計画で最も重要なことは、点検・計測結果に対して、適切な判断をすることであり、あらかじめ限界となる値を定めておき、その値に近づいてきたとき、対策又は具体的な措置がとれるよう準備しておくことである。

(2) 点検・計測について
(i) 点検・計測の対象項目.方法期間及び頻度
点検・計測の対象、項目及び方法の例を表 3.3.5に、また、点検・計測の期間及び頻度の例を表 3.3.6に示す。点検・計測には労力と経費を要することは当然であるが、工事の規模や地盤条件、周辺の状況等を考慮して、どの程度の点検・計測を行う必要があるかを検討し、山留め計画の一部として点検・計測管理の計画を立てておくことが望ましい。

表3.3 5 点検・計測の対象項目及び方法の例( JASS 3(一部修正)より)

表3.3.6 点検・計測の期間及び頻度の例( JASS 3(一部修正)より)

(ii) 計測の方法
山留めの計測方法には、電気的なセンサーとデータ収録・処理装骰等を用いた電気的計測と、ダイヤルゲージ、レベル、トランシット、盤圧計等を用いた機械的・光学的計測とがある。

1) 電気的計測は比較的大規模な工事や重要度・難易度の高い工事で採用されることが多く、手動計測から自動計測まで種々のシステムがある。計測システムは測定の目的、測点数、経費等に応じて選定される。

2) 機械的・光学的計測は、前記以外の工事において採用されるほか、電気的計測を行う工事での補助的な計測としても用いられる。一般的な現場で実施されている計測の概要は次のとおりである。

まず、掘削周辺の地盤の動きを測るために地上の適切な場所に測点を設置し、この点の垂直、水平の動きをトランシット、レベル、スケール等を用いて測る。山留め壁の変形は、壁の頂点に各通りごとに、何箇所か測点を設け、事前に設置した不動点を通してトランシットとスケール、又はピアノ線とスケールを使い山留め壁の面外への変位を計測する(図 3.3.11参照)。

土圧の計測には、これを直接測る方法も取られているが、一般的には山留め切張りにかかる軸力を図3.3.10に示すような盤圧計(ブルドン管形式)で測り安全性を確認している。設置箇所は掘削平面形状が単純な矩形で、周辺も特殊な条件がない場合、切張り各段ごとにX方向、Y方向に各1箇所ずつが一般的である。


図 3.3.10 切張り軸力計測の盤圧計取付け部例


図3.3.11 トランシットによる山留め変形測定の例

(iii) 盤圧計の設置方法

① 腹起しと切張りの接合部に設置する場合
火打材を用いない山留め支保工の場合に適し、盤圧計を取り付けても山留め支保工の安全にはほとんど影響を与えない。この場合は、火打材を入れると火打材に作用する力は測定できない(図3.3.12(イ)参照)。

② 火打材の基部に設置する場合
この場合は、切張りにかかる全荷重を測定することができるが、山留め支保工の安全性を阻害するおそれがあるので図 3.3.12(ロ)のような位置に必ず支柱を配置するなど、十分に注意する必要がある。盤圧計の取付け実施例を図 3.3.13に示す。

③ 切張りの中央に設置する場合
この場合は、腹起しから盤圧計位置までの距離が長いので、その間で荷重がつなぎ材や直角方向の切張り等に吸収されてしまい、全荷重を示さない。また、山留め支保工の安全から望ましくない(図 3.3.12(ハ)参照)。


図 3.3.12 盤圧計の設置方法

図 3.3.13 盤圧計の取付け実施例

(iv) 温度による影響
切張り材に鋼材を用いた場合は、温度変化の影響を考慮しなければならない。したがって、土圧を測定するときは気温も同時に測定するとともに、鋼材の膨張による応力変化を考慮する必要がある。

(3) 管理方法
計測結果を効果的に工事にフィードバックするには、迅速なデータ整理と計測結果の的確な評価、並びに安全性を損なう事態が発生した場合の対処方法について、計画時点で明確にしておく必要がある。管理計画においては、計測結果の検討方法や評価基準を明確にするとともに、異状時の対処についても管理体制を明確にしておくことが必要である。

計測結果の検討法の一例を図 3.3.14に示す。測定値はこの図のフローに従って検討する。

図中に示した管理基準値は測定値の評価基準となるものであり、設計条件や周辺環境条件から定められる。管理基準値は、計測項目によって異なるが、基本的な考え方として「一次管理値」、「二次管理値」、「限界値」というように細分化しておくと使用しやすい。例えば、「一次管理値」は設計計算値の80%、「二次管理値」は設計計算値、「限界値」はこれを超えると山留め架構の崩壊や周辺に障害が発生する値といった要領である。この場合、「一次管理値」は工事の努力目標、あるいはこれを超えると要注意といった注意信号であり、「二次管理値」は赤信号でこれを超えると抜本的な対策が必要という考え方である。

計測結果を評価することにより、計測時点の安全性を確認できるとともに、その後の推測もある程度可能であり、計測管理を工事ヘフィードバックしていることになる。最近では、更に一歩進めて計測時点の安全性はもちろんその後の挙動予測を行い安全性の確認,過大設計の修正に役立てようという試みがなされている。これは「情報化施工」あるいは「観測施工法」等と呼ばれている方法である。

なお、「限界値」の目安を表 3.3.7に示す。


図 3.3.14 測定値の検討フロー例(山留め設計施工指針より)

表 3.3.7 限界値の例(山留め設計施工指針(一部修正)より)

(b) 山留め設置期間中の異状

(1) 異状の発見及び観測
(i) 周辺地盤の沈下及びひび割れ

(ii) 山留め壁の変形:山留め壁頭部の移動量をトランシット、下げ振り等により測定する(図 3.3.11参照)。

(iii) 山留め支保工の変形

(iv) 切張りに作用する側圧測定

(v) 山留め壁からの漏水

(vi) 山留め壁背面土の状態(親杭横矢板工法の場合)
①横矢板をたたいて背面土の状態を点検
②横矢板の配列の乱れ

(2) 特殊な異状現象
(i) ヒービング
軟弱粘性土地盤を掘削するとき、山留め壁背面の土の重量によって掘削底面内部に滑り破壊が生じ、底面が押し上げられてふくれ上がる現象(図 3.3.15参照)。

(ii) ボイリング、クイックサンド、パイピング
上向きの水流のため砂地盤の支持力がなくなる現象、つまり砂地盤が水と砂の混合した液状になり、砂全体が沸騰状に根切り内に吹き上げる現象をボイリングといい(図 3.3.16参照)、このような砂の状態をクイックサンドという。
また、山留め壁の下部内側にクイックサンドが起きると山留め壁の上部外側からも土砂が運ばれてパイプ状の水みちができる。このような現象をパイピングという。

図 3.3.15 ヒービングの説明図


図 3.3.16 ボイリングの説明図

(iii) 盤ぶくれ
掘削底面下方に、被圧地下水を有する帯水層がある場合、被圧帯水層からの揚圧力によって、掘削底面の不透水性土層が持ち上げられる現象(図 3.3.17参照)。


図 3.3.17 被圧地下水による盤ぶくれの説明図

(c) 建築基準法施行令及び労働安全衛生規則に定められている災害防止関係の規定の概要を次に示す。

(1) 建築基準法施行令第136条の3(根切り工事、山留め工事等を行う場合の危害の防止)
(i) 地下埋設物(ガス管、ケーブル、水道管及び下水道管)の損壊による危害の発生を防止する措置を講じなければならない。

(ii) 建築工事等における地階の根切り工事その他の深い根切り工事(これに伴う山留め工事を含む。)は、地盤調査による地層及び地下水の状況に応じて作成した施工図に基づいて行わなければならない。

(iii) 建築物その他工作物に近接して根切り工事や掘削工事を行う場合は、当該エ作物の傾斜、倒壊による危害の発生を防止するための措置を講じなければならない。

(iv) 深さ1.5m以上の根切り工事を行う場合で、地盤が崩壊するおそれ及び周辺の状況により危害防止上支障があるときは、山留めを設けなければならない。

(v) 山留めの切ばり、矢板、腹起しその他の主要な部分は、構造計算により安全である構造としなければならない。

(vi) 工事施工中必要に応じて点検を行い、山留めを補強し、排水を適当に行うなど、安全な状態に維持するための措置を講ずるとともに,矢板等の抜取りに際しては、周辺の地盤の沈下による危害を防止するための措置を講じなければならない。

(2) 労慟安全衛生規則第368条~第375条(掘削作業等における危険の防止(土止め支保工))
(i) 土止め支保工の材料については、著しい損傷、変形又は腐食があるものを使用してはならない。

(ii) 土止め支保工の構造については、土止め支保工を設ける箇所の地山に係る形状、地質、地層.き裂,含水,湧水,凍結及び埋設物等の状態に応じた壁固なものとしなければならない。

(iii) 土止め支保工を組み立てるときは、矢板、くい、背板、腹おこし、切りばり等の部材の配置、寸法及び材質並びに取付けの時期及び順序を示した組立図を作成しなければならない。

(iv) 部材の取付け等の注意事項
① 切りばり及び腹おこしは、脱落を防止するため、矢板、くい等に確実に取り付ける。

② 圧縮材(火打ちを除く。)の継手は、突合せ継手とする。

③ 切りばり又は火打ちの接続部及び切りばりと切りばりとの交さ部は、当て板をあててボルトにより緊結し,溶接により接合する等の方法により堅固なものとする。

④ 中間支持柱を備えた土止め支保工にあっては、切りばりを中間支持柱に確実に取り付ける。

⑤切りばりを建築物の柱等部材以外の物により支持する場合にあっては、当該支持物は、これにかかる荷重に耐えうるものとする。

(v) 土止め支保工を設けたときは、その後7日をこえない期間ごと、中震以上の地震の後及び大雨等により地山が急激に軟弱化するおそれのある事態が生じた後に、次の事項を点検し、異常を認めたときは、直ちに補強又は補修しなければならない。

① 部材の損傷、変形、腐食、変位及び脱落の有無及び状態
② 切りばりの緊圧の度合
③部材の接続部、取付け部及び交さ部の状態

(vi) 土止め支保工の切りばり又は腹おこしの取付け及び取りはずしの作業については、土止め支保工作業主任者技能講習を修了した者のうちから、土止め支保工作業主任者を選任しなければならない。

3.3.3 山留めの撤去

(a) 山留め架構の撤去方法

山留め架構の撤去は、一般に地下躯体の構築に伴い所定の強度が発現したのち、側圧を躯体で受け直し、支保工を順次解体する(図 3.3.18参照)。

この際、上記支保工の設置深さを、地下躯体の構築過程を考慮して決める必要がある。また、支保工解体によって、上部の支保工に、解体以前に比較して大きな荷重が加わることになるので注意する。地下躯体にも荷重が加わるので、躯体強度についても確認して工事を進める。

施工条件によっては、切張り地盤アンカー、腹起しといった支保工を残したまま、地下躯体を1階床まで構築し、躯体強度が十分に発現したのち、山留め壁に作用する側圧を、地下外壁で受け直して支保工を撤去することもあるが、切張り工法の場合、だめ穴が発生し,漏水の可能性が高くなるため注意する。

なお、側圧の地下外堅への受直しで、各階床間の地下外壁に盛替え切張りを用いる場合(図 3.3.19参照)で、地下外壁に補強が必要な場合の補強例を表 3.3.8に示す。


図 3.3.18 山留め架構の撤去方法(JASS 3(一部修正)より)


図 3.3.19 盛枠え切張りの例(JASS 3(一部修正)より)

表 3.3.8 躯体の補強例(JASS 3(一部修正)より)

(b} 山留め壁の撤去
鋼矢板や親杭等を引き抜くと、周囲の土もともに抜き取ってしまい、大きな地盤沈下を引き起こすこともあるので、沈下量をなるべく少なくするよう直ちに抜き跡を砂等で充填する。また、鋼矢板や親杭等の引抜きにより、近隣に支障を与えるおそれがある場合は、山留め壁の存置等について設計担当者と打ち合わせ、適切に処理する。

(c) 切張り、地盤アンカー、腹起し等の撤去
切張り、地盤アンカーには大きな荷重が作用している。このため、軸力の解放時に金物類等が飛び出す危険がある。

また、地盤アンカーの鋼線が跳ね上がることもある。したがって、軸力の解放は適切な方法で行う。軸力の急激な解放を避け、解放時に、山留めや構造体に支障が起きていないか注意する。

支柱の引抜きは、構造体に支障を及ぼさないよう適切に行う。構造体に支障があったり、引抜きが困難な場合は、支柱の切断について設計担当者と打ち合わせ、適切に処理する。

参考文献

一次検定 施工(躯体工事)土工事・山留工事 3-1 地盤の現象

1級建築施工管理技士
学科対策 過去問題【 重要ポイント 】

3.施工(躯体工事)
3° 土工事・山留め工事

3-1 地盤の現象
下記の正誤を判断せよ。

①ヒービングをは、軟弱な粘性土地盤を掘削する際に、山留め壁の背面土のまわり込みにより掘削底面の土が盛り上がってくる現象をいう。

答え

 ◯

②軟弱地盤のヒービング対策として、根切り土を山留め壁に近接した背面上部に盛土して荷重を増やした。

答え

 ×

[ 解説 ]
軟弱地盤のヒービング対策として、掘削場外に余裕がある場合には、周囲の地盤をすき取り、山留め壁背面の荷重を減らす等ヒービングの原因をなる土圧を軽減する
大きな平面を一度に根切りせず、いくつかのブロックに分割して根切りし、コンクリート等で固めて順次施工する方法も有効である。

③ヒービングの発生防止のため、ウェルポイントで掘削場内外の地下水位を低下させた。

答え

 ×

[ 解説 ]
ヒービングは、掘削場内外の地下水位を低下させても、山留め壁の背面土圧にはほとんど影響しないので、ヒービング発生防止の効果は少ない
ヒービングのおそれのない良質な地盤まで山留め壁を根入れすること等も有効である。

④盤ぶくれとは、掘削底面やその直下に不透水性土層があり、その下の被圧地下水の圧力により掘削底面が持ち上がる現象をいう。

答え

 ◯

[ 解説 ]
 
  

⑤被圧地下水による盤ぶくれ対策として、止水性の山留め壁を被圧帯水層以深の不透水層まで根入れした。

答え

 ◯

[ 解説 ]
根切り底面下の盤ぶくれの発生が予想された場合の対策の1つに、被圧水頭を下げる方法があり、ディープウェル等の排水工法により行う。

⑥ボイリングの発生防止のため、止水性の山留め壁の根入れを深くし、動水勾配を減らした。

答え

 ◯

[ 解説 ]
止水性の山留め壁不透水性地盤まで根入れする等も有効である。

⑦パイピングとは、粘性土中の弱い所が地下水流によって局部的に侵食されて孔や水みちが生じる現象をいう。

答え

 ×

[ 解説 ]
パイピングとは、砂質土の地盤で浸透水流により、パイプ状の孔や水みちができる現象をいう

⑧クイックサンドとは、砂質土のように透水性の大きい地盤で、地下水の上向きの浸透力が砂の有効重量より大きくなり、砂粒子が水中で浮遊する状態をいう。

答え

 ◯

一次検定 施工(躯体工事)土工事・山留工事 3-2 土工事等

1級建築施工管理技士
学科対策 過去問題【 重要ポイント 】

3.施工(躯体工事)
3° 土工事・山留め工事

3-2 土工事等
下記の正誤を判断せよ。

(排水工法)
①釜場工法は、重力排水工法の1つである。

答え

 ◯

②排水の打切りにより、地下構造物が浮き上がることがある。

答え

 ◯

(掘削・根切り)
③粘性土地盤を法切りオープンカット工法で掘削するので、円弧すべりに対する安定を検討した。

答え

 ◯

[ 解説 ]
法付けオープンカットの法面保護をモルタル吹付けで行った場合は、法面に水抜き穴を設ける。

④切梁工法の一次根切りにおいては、山留め壁の頭部が倒れるような変形が一般的なので、山留め壁頭部の動きに留意して掘削した。

答え

 ◯

⑤切梁工法の二次根切りにおいては、周辺地盤の地表面の沈下は山留め壁際が最大となるので、山留め壁際の沈下に留意して掘削した。

答え

 ×

[ 解説 ]
切梁工法の二次根切り時以降では、山留め壁は切梁位置で水平変位が抑制され、根切り底付近で最大変位を示す弓形の変位となるため、周辺地盤の地表面の沈下は、壁から少し離れた位置で最大となる

⑥直接基礎の床付け地盤を乱したが、粘性土であったので、そのまま転圧して捨てコンクリートを打設した。

答え

 ×

[ 解説 ]
直接基礎の床付け面を乱してしまった時は、粘性土の場合は礫・砂質土に置き換えるか、セメント・石灰などによる地盤改良を行う
床付け地盤を凍結させた場合は、良質土と置換するなどの処置が必要である。

(埋戻し及び盛土)
⑦盛土材料は、敷均し機械によって均等、かつ、一定の厚さに敷均してから締固めを行わないと、将来盛土自体の不同沈下の原因となることがある。

答え

 ◯

[ 解説 ]
機械による締固めを行う場合、盛土材料にばっ気又は散水を行って、含水量を調節することがある。

⑧埋戻しの選択に当たっては、均等係数が大きい性状のものを選んだ。

答え

 ◯

[ 解説 ]
粘性土を埋戻しに使用したので、余盛りは砂質土の場合より大きくする。

⑨動的な締固めは、ロードローラー、タイヤローラー等の重量のある締固め機械を用いて、人為的に過圧密な状態を造り、締め固めるものである。

答え

 ×

[ 解説 ]
ロードローラーやタイヤローラー等の重量のある機械を用いて、人為的に加圧密な状態を造り締め固める方法は、静的な締固めで、大規模な埋戻しや盛土工事に用いられる

水締めは、水が重力で下部に浸透する際に土の粒子が沈降し、土の粒子間のすき間を埋める現象を利用したものである。

一次検定 施工(躯体工事)土工事・山留工事 3-3 山留め工事

1級建築施工管理技士
学科対策 過去問題【 重要ポイント 】

3.施工(躯体工事)
3° 土工事・山留め工事

3-3 山留め工事
下記の正誤を判断せよ。

①自立山留め工法は、山留め壁の根入れ部の受働抵抗に期待するため、根切り深さが浅い場合に適している。

答え

 ◯

②親杭横矢板工法は、止水性はないが、比較的硬い地盤でも施工可能であり、他の工法に比べて経済的に有利である。

答え

 ◯

③鋼矢板工法は、止水性があり、地下水位の高い砂礫層などの硬い地盤の場合に適している。

答え

 ◯

[ 解説 ]
鋼矢板工法は、矢板の継手部のかみ合わせにより止水性があるので、地下水位の高い地盤には適しているが、砂礫層などの硬い地盤には打設することが困難である
鋼矢板山留め壁に用いる鋼矢板の許容応力度は、新品の場合であってもその数値を割増すことはできない。

④地盤アンカー工法は、敷地の高低差が大きく山留めにかかる側圧が偏土圧となる場合に適している。

答え

 ×

⑤水平切梁工法において、集中切梁とする方法は、根切り及び躯体の施工能率の向上に効果がある。

答え

 ◯

[ 解説 ]
水平切梁工法において、井形に組む格子状切梁方式は、一般に掘削平面整形な場合に適している。

⑥水平切梁工法において、切梁にプレロードを導入するときは、切梁交差部の締付けボルトを締め付けた状態で行う。

答え

 ×

[ 解説 ]
プレロードする場合は、切梁交差部締付けボルト緩めた状態で行う
水平切梁工法における鋼製切梁では、温度応力による軸力変化について検討する必要がある。

⑦水平切梁工法における腹起しの継手位置は、切梁と火打梁との間又は切梁に近い位置に割り付ける。

答え

 ◯

[ 解説 ]
油圧式荷重計は、切梁にかかる全荷重を測定するため、切梁の中央部を避け、火打梁との交点近い位置に設置する。

⑧山留め壁の根入れ長さは、山留め壁の掘削側側圧による抵抗モーメントと背面側側圧による転倒モーメントとのつり合いから決める。

答え

 ◯

[ 解説 ]
山留め壁背面に作用する側圧は、一般に深さ比例して増大する。

⑨山留め壁周辺の地盤の沈下を計測するための基準点は、山留め壁に近接した地盤面に設けた。

答え

 ×

[ 解説 ]
山留め壁周辺の沈下を計測するための基準点は、公道に面する敷地境界の地盤面に一定間隔に設け、公道の反対側に設けた点との差を計測する。
山留め壁の頭部の変位を把握するために、トランシットやピアノ線、スケール、下げ振りを用いて計測を行う。

⑩ H形鋼を用いた切梁の軸力を計測するためのひずみ計は、2台を1組としてウェブに設置した。

答え

 ◯

一次検定 施工(躯体工事)土工事・山留工事 3-4 ソイルセメント柱列山留め壁

1級建築施工管理技士
学科対策 過去問題【 重要ポイント 】

3.施工(躯体工事)
3° 土工事・山留め工事

3-4 ソイルセメント柱列山留め壁
下記の正誤を判断せよ。

①山留め壁の剛性が小さいため、土圧が大きい軟弱地盤には適さない。

答え

 ×

[ 解説 ]
ソイルセメント柱列壁工法は、セメント系注入液を原位置土と混合攪拌し、掘削孔をオーバーラップ施工し心材にH形鋼等を挿入したもので、剛性止水性優れており、土圧大きい軟弱地盤適する。地下水位が高い地盤は軟弱な地盤に適した工法である。

②ソイルセメントの中に挿入する心材をしては、H形鋼やI形鋼などが用いられる。

答え

 ◯

③ソイルセメントは、止水の役目と土留め壁の構造材の一部として使用される場合がある。

答え

 ◯

④泥水処理が必要で、排出泥土が鉄筋コンクリート山留め壁に比べて多い。

答え

 ×

[ 解説 ]
ソイルセメント柱列山留め壁は、原位置土とセメント系注入液を混合・かくはんして使用するので、泥水処理不要で、排出土も鉄筋コンクリート山留め壁に比べて少ない

⑤N値50以上の地盤、大径の玉石や歴が混在する地盤では、先行削孔併用方式を採用してエレメント間の連続性を確保する。

答え

 ◯

[ 解説 ]
先行削孔併用方式は、N値50以上の地盤における山留め壁の造成に用いられる。

⑥根切り時に発生したソイルセメント硬化不良部分は、モルタル充填や背面地盤への薬液注入などの処置をする。

答え

 ◯

⑦山留め壁の構築部に残っている既存建物の基礎を先行解体するためのロックオーガーの径は、ソイルセメント施工径より小さい径のものとする。

答え

 ×

[ 解説 ]
山留め壁の構築部に残っている既存建物を先行解体する場合、施工精度を上げるため、施工に先立ちソイルセメント施工径より大きな径のロックオーガー機等を用いて行う

⑧単軸のロックオーガーによる方法は、硬質な岩や地中障害がある場合の土留め壁の造成に用いられる。

答え

 ◯

⑨多軸の掘削攪拌機を用いる場合、エレメント間の連続性を確保するため、エレメントの両端部分をラップして施工する。

答え

 ◯

[ 解説 ]