5.乾式工法
10.5.1 適用範囲
本節の適用範囲を外れる場合はもちろん、適用範囲内であっても地震力、風圧力等の外力の適切な設定と、石材物性の把握、許容耐力の設定が重要なポイントとなる。
石材の曲げ強度や仕口部耐力の設定は事前の試験により、統計的な処理に基づいて定めるのが一般的である。
③ 工程、工期短縮が図れる。
②物性値(曲げ、仕口部耐力、ばらつき)の把握が重要である。
建物高さを31m以下としているのは、建築基準法において、構造耐力上の検討条件が異なる場合があること、また、過去の実例でも高さ31mを超える建物での使用実績があまりないことにもよっている。
石厚 70mm以下としたのも実績による。1枚の施工可能な質量(40~60kg程度)からみて、厚い石材では施工性が悪くなる。
近年ではコンクリート壁以外の鉄骨下地等に石材を取り付ける場合もある。乾式工法は他の石張り工法に比べ対応しやすい工法ではあるが、下地の挙動等、個別の条件に対応したファスナー金物、目地形状等の検討が必要である。ここでは、地震時等の変形量が小さいRC造、SRC造のコンクリート壁を下地とする場合を想定している。
したがって、試験結果によっては目算と異なり、設計図書に記載の石材の寸法や厚さでは耐力上不適切で、寸法や厚さの設計変更が必要になる場合がある。この場合には、設計担当者と打ち合わせ、「標仕」1.1.8によって設計変更を行うなどの対応が必要である。
通常、4箇所のファスナーが等分に風圧力を負担することは困難であり、1箇所が遊ぶと考え、対角方向の2箇所で支持するものとして計算を行う。また、石材の性質のばらつきを考慮したうえで、更に安全率を見込んでいる。
最大強制変形角については個々の建築物によって異なるために特記によらなければならない。
したがって、外壁の乾式石張工事に先立ち、躯体コンクリートの打継ぎ部やその他の防水上の弱点部を防水処理する。
厚さは張り石の曲げ耐力や仕口部耐力に大きく影響する。 前記物性試験においても予定厚さのものに加え、5~10mm厚い石材での試験も実施しておいた方がよい。
なお 形状は矩形を原則とし、切欠き、穴あけ等を避ける。
穴あけ加工はドリルを用い、水冷しながらの工場加工とし、板厚の中央に正確にせん孔する。 振動ドリル等不要な衝撃を与える加工機器は用いない。
各種の織布・不織布と樹脂による裏打ち処理は万一の破損時に小片が脱落するのを防止すると同時に耐衝撃性の向上に効果がある。
現場打込みのコンクリート壁の精度、あと施工アンカーの精度を考慮すると、上下左右、出入り方向とも10mm程度以上の調整機構が必要となる。一次ファスナーのみの形式では調整が非常に困難になるうえ、隣接石材との調整も繁雑となることから、「標仕」では二次ファスナー用いる形式を前提としている(図10.5.1及び2参照)
図10.5.1 スライド方式のファスナーの例(JASS9より)
図10.5.2 ロッキング方式のファスナーの例(JASS9より)
乾式工法を外壁に適用する際には、建築基準法施行令第82条の4、平成12年建設省告示1458号に従って算出した風圧力に対して、張り石各部に発生する応力が部材の許容応力度を超えないよう、工法が特記される。
躯体の精度±10mmとファスナー寸法60mmから、石材裏面から躯体表面までの取付け代は70mmを標準とされた。過大に設定するとファスナーが大きくなり、経済性が損なわれる。
ファスナー金物用あと施工アンカーの施工に先立ち、躯体のセパレータ一部の止水処理、打継ぎ目地や誘発目地へのシーリング施工、場合により塗膜防水の施工を行う。コンクリートの欠陥部には適切な処置を施しておく。あと施工アンカーはそのアンカー耐力を確認する。
あと施工アンカーの穿孔が躯体鉄筋に当たることが多い。図面上の鉄筋位置と実際の位置との照合が必要であるが、鉄筋探知機等を利用するか、試験的な穿孔をする。鉄筋に当たった場合、穿孔位置を変更せざるを得ない。鉛直筋の場合には水平方向に逃げ、水平筋の場合には鉛直方向ヘ一次ファスナーの上下を反転して使用できる範囲内に逃げる。それでも納まらない場合には.ルーズホールを長くした一次ファスナーの役物の使用を検討する。
10.3.3 (b)(1)③で解説した打込み式のあと施工アンカー(めねじ形)は、許容引張耐力が小さいため.乾式工法では使用しない。
排水処理を考慮し、石材には裏面処理等のぬれ色・白華対策が必要となる(図10.5.3参照)。
図10.5.3 幅木部分の例
一次ファスナーの出入りはライナープレートを用い、上下左右はルーズホールで調整して取付け位置を定め、一次ファスナーをあと施工アンカーに固定する。 石張りの水平精度は一次ファスナーの取付け精度で決まるため.特に上下方向は載荷によるファスナーのたわみを考慮して正確に取り付ける。現場浴接は行わない。ダブルナット又は緩止め特殊ナットを使用する。
石材を二次ファスナーに連結するためのだぼを石材に固定する方法には、ファスナーの形式により二とおりがある。上の石の下部と下の石の上部を支える二次ファスナーが別個になっている場合(例えば「標仕」表10.2.4のスライド方式) には、あらかじめ上部のだぼを石材に固定しておくことができる。しかしながら、通しだぼのような場合(例えば「標仕」表10.2.4のロッキング方式)には、だぼはあと付けにならざるを得ない。
この繰返しにより、一次ファスナーで調整しきれなかった分を調整し.壁面の下部より上部に向かって石材を積み上げていく。
最下段のファスナーの場合は、張り石を仮置きし調整する。載荷によるファスナー金物のたわみやなじみにより、ファスナーと下部石材との間のクリアランスが確保できない場合は、一次ファスナで再調整する。下部石材と上部石材の間にスペーサー(アクリル製等)を用いた調整を行うと、ファスナーに荷重がかからず、上部石材の荷重が下部石材に伝達されてしまうので、このような用い方はしない。
だぼ穴充填材がはみ出すと変位吸収のためのルーズホールをふさいでしまう。充填量に留意すると同時に不要な充填材は硬化前に除去する。石材上端ファスナーとだぼでスライド機構を設ける場合は、だぼの出寸法の管理が重要である。抜け防止のため、つば付きだぼピンを用いることも多い。
乾式工法では.目地内にファスナの金物が配置されることになり、施工精度を向上させなければ十分に通りよく、クリアランスを確保した施工は難しい。そのため、上下の石材間にスペーサーを挿入して目地幅を調整することがあるが、スぺーサーを撤去しないと上部石材の荷重がファスナーではなく下部石材に伝逹されてしまう。このようなスペーサーの用い方をしてはならない。また縦長の張り石では地震に石材の回転が生じ上部ファスナーとの接触も生じかねない。目地幅は広めに設定することが望ましい。