4章 地業工事 7節 「標仕」以外の工法

第4章 地業工事 


7節 「標仕」以外の工法

4.7.1 本設地盤アンカー(永久アンカー)

(a) 本設地盤アンカーの種類
本設地盤アンカーとは本設の構造物の一部として用い、所要の性能を全供用期間中有する地盤アンカーで、鉛直方向の引抜きに抵抗する本設鉛直地盤アンカーと、斜め方向の引抜きに抵抗する本設斜め地盤アンカーがある。本設地盤アンカーには、全供用期間にわたって、本設構造物に発生する応カ・変形及び変位の軽減や防止ができる性能が要求され,このため、引張材を腐食から守る二重防錆処理が行われる。一般に、個々の防錆方法を検討するのではなく、全体のシステムとして防錆処理が考慮された地盤アンカー工法を採用する場合が多い。このような本設地盤アンカー 工法の一例を、図4.7.1に示す。

なお、その他の工法例等については、(-社)日本建築学会「建築地盤アンカー設計施工指針・同解説」等を参照されたい。


図4.7.1 本設地盤アンカー工法の例(建槃地盤アンカー設計施工指針・同解説より)

(b) 品質管理
(1) アンカーの品質管理は、①使用材料、②施工管理、③試験(基本試験確認試験)が重要である。その際の要求品質と品質管理方法についての例を表4.7.1に示す。

表4.7.1 本設地盤アンカーの要求品質と品質管理方法

(2) 地盤アンカーには、大きな地盤のせん断抵抗や支圧抵抗が期待される。一方、地盤には、強度のばらつきや地層の起伏があり、また、地盤アンカーの耐力は、施工状態に左右される。このため、地盤アンカーの信頼性を試験によって確認する必要がある。地盤アンカーの信頼性を確認する試験には、基本試験と確認試験の2種類がある。基本試験は、設計に必要なデータを得るためのものであり、設計に先立ち実施することが基本で、施工性、引抜き抵抗力、変形、長期特性等を把握するためのものである。確認試験は、地盤アンカーが設計で要求された性能を有しているか確認する試験で、全数に対して実施する。

4.7.2 地盤改良

(a) 地盤改良の種類
(1) 地盤改良工法の種類は多種多様であるが、建築物の本設地盤の構築を目的として実績が豊富なものは、深層混合処理工法等のセメント系固化材を用いた固化工法とサンドコンパクション工法による締固め工法である。

(2) 改良効果は、改良前の地盤条件や施工等に密接にかかわっているので、事前の地盤調査により成層状況や土質を詳細に把握して効果を確認することが必要不可欠である。

(3) 地盤改良に使用する材料は、改良効果の持続性や地盤環境の観点から支障ないものを選択しなければならない。

(b) 深層混合処理工法
(1) 深層混合処理工法は、改良原理が現地土と固化材のかくはん混合であるため、改良体の品質は地層構成土質やかくはん条件に大きく影響される。

(2) 品質管理では、①配合条件、②施工管理、③効果確認が重要であり、改良目的や改良範囲.地盤条件に応じて適切な管理方法や管理値を設定しなければならない。

(3) 具体的な設計指針や品質管理指針は、(-財)日本建築センター「改訂版建築物のための改良地盤の設計及び品質管理指針」及び(-社)日本建築学会「建築基礎のための地盤改良設計指針案」を参照されたい。また、要求品質と管理方法については「国土交通省総合技術開発プロジェクト「建設事業の品質管理体系に関する技術開発」報告書 建築分野編」(平成13年3月 国土交通省建築研究所)、(-財)日本建築センター「改訂版建築物のための改良地盤の設計及び品質管理指針」及び(-社)日本建築学会「建築基礎のための地盤改良設計指針案」を参照されたい。深層混合処理工法の要求品質と品質管理方法の例を表4.7.2に示す。

表4.7.2 深層混合処理工法の要求品骰と品質管理方法

(4) セメント及びセメント系固化材を地盤改良に使用する場合には、条件によっては六価クロムが土壌環境基準を超える濃度で溶出するおそれがあるため、国土交通省では、六価クロム溶出試験を実施して六値クロムの溶出量が土壊環境基準以下であることを確認するよう、設計図書で指定することとしている。

(c) 締固め工法
(1) 締固め工法は、地盤の支持性能の向上を目的として、砂砕石等を地盤中に鉛直に打設して杭状の改良体を築造するものである。

(2) 品質管理では、①使用材料、②施工管理、③効果確認が重要であり、改良目的や改良範囲、地盤条件に応じて適切な管理方法や管理値を設定しなければならない。

(3) 締固め工法の要求品質と品質管理方法については、「国土交通省総合技術開発プロジェクト「建設事業の品質管理体系に関する技術開発」報告書 建築分野編」(平成13年3月 国土交通省建築研究所)及び(-社)日本建築学会「建築基礎のための地盤改良設計指針案」を参照されたい。締固め工法の要求品質と品質管理方法の例を表4.7.3に示す。

表4.7.3 締固め工法の要求品買と品質管理方法

参考文献

5章 鉄筋工事 1節 一般事項

第5章 鉄筋工事 


1節 一般事項

5.1.1 適用範囲

(a) この章は,鉄筋コンクリート造、鉄骨鉄筋コンクリート造等の鉄筋工事に適用されるほか、補強コンクリートブロック造やプレキャストコンクリート工事等でも引用されている。

(b) 作業の流れを図5.1.1に示す。

図5.1.1 鉄筋工事の作業の流れ

(c) 施工計画書の記載事項は、おおむね次のとおりである。ただし、継手の工法については「標仕」5.3.4(a)で標準としているガス圧接継手を対象として示す。
なお、赤文字を考慮しながら品質計画を検討する。

(1) 鉄筋工事の施工計画書

工程表
(材料、柱、壁、梁、階段スラブ等の検査時期及び関連設備工事の期間)
② 施工業者名、作業の管理体制
鉄筋の種別、種類、製造所名及びその使用区分
④ 規格品証書(7.2.10 (a)(1)参照)の提出時期
荷札の照合と提出時期(ラベル、鉄筋のマーク等の確認方法)
鉄筋の試験(試験所、回数、試験成績書)
⑦ 材料の保管場所及び貯蔵方法
⑧ 材料の加工場所(現楊又は工場の別、規格及び機械設備)
⑨ 鉄筋加工機具(切断、曲げ)
鉄筋の継手位置、継手長さ、定着長さ及び余長
異形鉄筋にフックを付ける箇所
鉄筋のかぶり厚さ及びスペーサーの種類
梁、壁、スラブ等の開口部補強、
屋根スラブ、片持スラブ、壁付きスラブ、パラペット等の特殊補強の要領

鉄筋位置の修正方法(台直し等)
⑮ 鉄筋組立後の乱れを防止する方法(歩み板の使用等)
⑯ 関連工事との取合い(柱付きコンセント、スラブ配管、壁配管、貫通孔等)
作業のフロー、管理の項目・水準・方法、品質管理体制・管理責任者.品質記録文書の書式とその管理方法等

(2)ガス圧接の施工計画書

① 工程表(圧接の時期)
② 施工業者名及び作業の管理体制
ガス圧接技技量資格者の資格種別等(資格証明書等)
④ ガス圧接技量資格者の人数
⑤ ガス圧接器具
圧接部の外観試験(全圧接部)
圧接部の超音波探傷試験(本数、試験方法、試験位置、探傷器、試験従事者、成績書)
圧接部の引張試験(本数、採取方法、作業班ごとの施工範囲、試験所、成績書、鉄筋切断後の補強方法)
不良圧接の修正方法


5.1.2 基本要求品質

(a) 鉄筋工事では,使用するコンクリートの強度との組合せにおいて必要な品質性能の鉄筋コンクリート構造物となるようにその種類が設計図書に指定される。基本要求品質としては、指定された種類の材料が工事に正しく使用され、その本数や配筋状態に誤りがなく、定着や継手が正しく施工されていることであり、このことを証明できるようにしておく必要がある。

具体的な例としては、使用する鉄筋材がJISマーク表示品であれば、ミルシート及びチャージ番号の表示された鋼板(メタルタック)並びに製造所、加工場から現場までの経歴を証明する資料を整備することが考えられる。

(b)「組み立てられた鉄筋は、所定の形状及び寸法を有し、所定の位置に保持されていること。」とは鉄筋コンクリート構造物の一部として出来上がった状態をいっており、これをコンクリート打込み後に確認することは現実的には不可能となる。完成時にこれらの要求事項を満足していることを証明するためには、施工途中の適切な時点で施工が正しく行われていることを何らかの方法で確認し記録することが重要である。

具体的には、鉄筋の加工段階での形状・寸法の確認・記録、組み上げた鉄筋のかぶり厚さの確認・記録等が考えられる。また、この寸法及び位置には施工上必要な許容誤差を含んだものとして考える必要があり、部材の大きさ立地条件、取り合う部材の状況等を勘案して適切に定める。ただし、「標仕」表5.3.6で規定する鉄筋の最小かぶり厚さは、法律に定められたものであり、これを下回ることのないようにしなければならない。

「鉄筋の表面は、所要の状態であること。」とは施工途中の、特にコンクリート打込み直前における鉄筋に、コンクリートとの付着性能を阻害するような油脂類、錆、泥、セメントペースト等が付着していない表面状態とすることであり、その程度を定める必要がある。具体的には、油脂類、浮き錆、セメントペースト類は、コンクリート打込み前に除去しておく必要があり、この付着物の程度、除去のための方法と処理後の確認方法をあらかじめ施工者に提案させ、また、確認したことを記録に残す。

なお、錆のうち、浮いていない赤錆程度のものについては、コンクリートとの付着を阻害することがないので、無理にこれを落とす必要はない。

(c) 鉄筋は、鉄筋コンクリートの構成部材として、主として引張力を負担しているが、部材に作用するこれらの力をスムーズに伝達させる必要がある。このために必要となる継手及び定着の方法が設計図書に指定されている。「標仕」においては、一般的な場合における継手及び定着の方法が示されており、通常は、定着の方法及び長さ、継手の位置及び長さを確保すればよい。特別な形状の部材にあっては、設計図書に特記されるため、これによる。

なお配筋の状況により、規定された定着や継手を設けることができない場合にあっては、「作用する力を伝達」できるような定着や継手の方法を施工者に提案させ、これを元に設計担当者と打合せを行うなどの方策をとらなければならない。

5.1.3 配筋検査

(a) 一般事項
(1) 材料の種類、鉄筋の加工・組立及びかぶり厚さの精度は、鉄筋コンクリートの構造性能及び耐久性に著しく影響する。このため、「標仕」5.1.3では主要な構造部の配筋はコンクリート打ちに先立ち監督職員が検査を行うこととしている。

(2) 鉄筋が完全に組み立てられたあとでは、修正が困難な場合があるので、工程の進捗に対応した適切な時期に検査を行う必要がある。

(3) 配筋検査終了後に埋込み配管が設けられる場合があるので、コンクリート打ちに先立ち、必要に応じて、再度検査を行う。

(b) 検査内容
(1) 組立時の確認
① 種別、径、本数
② 折曲げ寸法、余長、フック
③ 鉄筋のあき、かぶり厚さ
④ 定着・継手の位置、長さ
⑤ 補強筋、差し筋
⑥ スペーサーの配置、数量
⑦ ガス圧接継手の抜取試験(超音波探傷試験又は引張試験)
⑧ 機械式継手等の試験(全数又は抜取り)
⑨ 配管等の取合い

(2) 検査後の手直し修正確認

5章 鉄筋工事 2節 材料

第5章 鉄筋工事 


2節 材 料

5.2.1 鉄 筋

(a) 鉄筋は、形状から異形鉄筋と丸鋼に分けられる。また、製造原料の違いから鉄筋コンクリート用棒鋼と鉄筋コンクリート用再生棒鋼に分けられる。鉄筋コンクリート用棒鋼(JIS G 3112)は転炉、電炉又は平炉により鋼塊から熱間圧延によって製造され、鉄筋コンクリート用再生棒鋼(JIS G 3117)は鋼材製造途上に発生する再生用鋼材を材料としてこれらを再圧延して製造される。

(b) 鉄筋には、1こん包ごとに荷札が付けてあり、種別の記号、径又は呼び名、溶鋼番号(7.2.10(a)(1)(ⅱ)参照)、製造業者名等が表示される。

(c) 規格品証明書については,7.2.10(a)(1)(ⅱ)を参照する。

(d) 異形鉄筋の直径及び断面積は、その異形鉄筋と同じ質量の丸鋼に換算したときの直径及び断面積であり、これを公称直径及び公称断面積と呼んでいる。

(e) 主要構造部等に使用する鉄筋は、「建築物の基礎、主要構造部等に使用する建築材料並びにこれらの建築材料が適合すぺき日本工業規格又は日本農林規格及び品質に関する技術的基準を定める件」(平成12年5月31日 建設省告示第1446号)で、JIS G 3112及び JIS G 3117並びに国土交通大臣の認定品とされたが、「標仕」では、このうちから標準的に使用するものの種類の記号を、「標仕」表5.2.1に掲げている。

なお、鉄筋コンクリート用棒鋼に丸鋼も掲げられているが、現在ではほとんど使用されていない。

(f)「標仕」表5.2.1には、SD490が含まれていない。SD490が使用される場合には、折曲げ形状及び寸法並びに継手・定着長さ及び継手方法を含め、特記されることになる。

(g) 近年では、せん断補強として、高強度せん断補強筋が用いられることがある。これは、降伏点が685 N/mm2、785 N/mm2等の材料であり、せん断補強筋量を低減させることができる。また、梁貫通の補強筋としても、鉄筋径を低減させることができることから、使用されている。最近では、許容応力度 1,275N/mm2 の材料も用いられることがある。ただし、これらは大臣認定品であり、強度式とリンクしていることや折曲げ寸法についても注意が必要である。

(h) 異形鉄筋の圧延マークの例を図5.2.1に示す。


図5.2.1 異形鉄筋の圧延マークの例

(g) JIS G 3112(鉄筋コンクリート用棒鋼)の抜粋を次に示す。

JIS G 3112:2010

1.適用範囲

この規格は、コンクリート補強に使用する熱間圧延によって製造された丸鋼1)及び異形棒鋼1)について規定する。ただし、JIS G 3117に規定する鉄筋コンクリート用再生棒鋼には適用しない。
1) コイル状のものを含む。

3.種類及び記号
丸鋼の種類は2種類、異形棒鋼の種類は5種類とし、その記号は表1による。

表1- 種類の記号

5.化学成分
丸鋼及び異形棒鋼は、9.1によって試験を行い、その溶鋼分析値は、表2による。

表2-化学成分 a)

注a) 必要に応じて、この表以外の合金元素を添加してもよい。

6.機械的性質
丸鋼及び異形棒鋼は、9.2によって試験を行い、その降伏点又は耐力、引張強さ、伸び及び曲げ性は、表3による。

なお、曲げ性の場合は、その外側にき裂を生じてはならない。

表3 – 機械的性質

a) 異形棒鋼で、寸法が呼び名D32を超えるものについては、呼び名3を増すごとにこの表の伸びの値からそれぞれ2を減じる。ただし、減じる限度は4とする。

7.2.2 形状・寸法、質置及び許容差

異形棒鋼の形状、寸法、質品及び許容差は、次による。
a) 異形棒鋼の寸法は、呼び名で表しその寸法、単位質量及び節の許容限度は、表4による。

表4 – 異形棒鋼の寸法、単位質量及び節の許容限度

a) 公称断面積、公称周長、及び単位質量の算出方法は、次による。

なお、公称断面積(S)は有効数字4けたに丸め、公称周長( ℓ )は少数点以下1けたに丸め、単位質量は有効数字3けたに丸める。


b) 節の平均間隔の最大値は、その公称直径(d)の70%以下とし、算出した値を小数点以下1けたに丸める。
c) 節の高さは、表5によるものとし、算出値を少数点以下1けたに丸める。(表5省略)
d) 節のすき間の合計の最大値は、ミリメートルで表した公称周長( ℓ )の25%とし、算出した値を小数点以下1けたに丸める。ここでリブと節とが離れている場合、及びリブがない場合には節の欠損部の幅を、また、節とリブとが接続している場合にはリブの幅を、それぞれ節のすき間とする。

b) 異形棒鋼の標準長さは、表6による。ただし、コイルの場合には、適用しない。

表6 – 標準長さ

11.表 示

11.1 1本ごとの表示

丸鋼及び異形棒鋸の1本ごとの表示は,次による。ただし、丸鋼のコイル及び寸法が呼び名D4、D5、D6、D8の異形棒鋼のコイルの表示は、1結束ごとの表示とし、11.2による。

a) 丸鋼及び異形棒鋼は、表10によって種類を区別する表示を行う。ただし、異形棒鋼の種類を区別する表示は、SD 295Aを除き圧延マークによることとし、寸法が呼ぴ名D4、D5、D6、D8の異形棒鋼及びねじ状の節をもった異形棒鋼に限り、色別塗色としてもよい。

b) 異形棒鋼は、圧延マークによって製造業者名又はその略号による表示を行う。ただし、寸法が呼び名 D4、D5、D6、D8(コイルを除く。)の異形棒鋼及び異形表面の形状によって製造業者名が明確な異形棒鋼に限り、この表示を省略してもよい。

表10 – 種類を区別する表示方法

11.2 1結束ごとの表示
丸鋼及び異形棒鋼の1結束ごとの表示は、次の項目を適切な方法で行う。

a) 種類の記号
b) 溶鋼番号又は検査番号
c) 径、公称直径又は呼び名
d) 製造業者名又はその略号

JIS G 3112:2010

5.2.2 溶接金網

JIS G 3551(溶接金網及び鉄筋格子)抜粋を次に示す。

JIS G 3551 : 2005

1.適用範囲
この規格は、鉄線又は棒鋼を材料として、主にコンクリート構造物及びコンクリート製品の補強に使用する溶接金網及び鉄筋格子について規定する。

3.定 義
この規格で用いる主な用語の定義は次による。
a) 溶接金網
鉄線を直交して配列し、それらの交点を電気抵抗溶接して、格子状にした金網。次のレギュラー溶接金網及びデザイン溶接金網がある。

1) レギュラー溶接金網
網目形状が定められた正方形のもので、各縦線・各横線がそれぞれ定められた同一の線径又は公称線径をもち、輻1m × 長さ2m 及び 幅2m × 長さ4mの溶接金網。

2) デザイン溶接金網
レギュラー溶接金網以外のもの。

b) 鉄筋格子
棒鋼を直交して配列し、それらの交点を磁気抵抗溶接して、格子状にした鉄筋網。次のレギュラー鉄筋格子及びデザイン鉄筋格子がある。

g) 突出し長さ(overhang)
縦線又は横線の外側線の中心から、横線又は縦線の先端までの長さ。次の横線突出し長さ及び縦線突出し長さがある。

1) 横線突出し長さ
縦線の外側線の中心から横線の先端までの長さ(図1参照)。

2) 縦線突出し長さ
横線の外側線の中心から縦線の先船までの長さ(図1参照)。

h) 網目寸法(spacing)
隣接した縦線又は横線の中心から中心までの距離。次の横網目寸法及び縦網目寸法がある。

1) 横網目寸法 縦線の中心から隣の縦線の中心までの距離(図1参照)。
2) 縦網目寸法 横線の中心から隣の横線の中心までの距離(図1参照)。


図1 溶接金網又は鉄筋格子(例)

8.寸法,質量及びその許容差
8.1 標準線径,標準公称線径,標準径及び公称直径並びにそれらの許容差
a) 溶接金網
1) 丸鉄線
丸鉄線を用いた溶接金網(WFP、WFC、WFP-D及びWFC-D)の縦線及び横線の標準線径は,表5による。また、線径の許容差は、表6による。(表6は省略)
表5 溶接金網に用いる丸鉄線の標準線径

8.4 網目寸法及びその許容差
a) レギュラー溶接金網及びレギュラー鉄筋格子
レギュラー溶接金網及びレギュラー鉄筋格子の網目寸法は、表9による。また、標準線径、呼び名又は標準径に対する網目寸法は、それぞれ表10、表11、表12及び表13による。また、網目寸法の許容差は、網目寸法に対して±10mm又は7.5%のうち、いずれか大きい値とする。(表10~13は省略)

b) デザイン溶接金網及びデザイン鉄筋格子
デザイン溶接金網及びデザイン鉄筋格子の網目寸法の許容差は、それぞれ網目寸法に対して±10mm又は7.5%のうち、いずれか大きい値とする。

表9 レギュラー溶接金網及びレギュラー鉄筋格子の網目寸法

JIS G 3551 : 2005


5.2.3 材料試験

「標仕」5.2.3は、鉄筋の品質を試験により証明する場合について定めたものであるが、この規定によりJISに適合することを証明するためには、機械的性質だけでなく、化学成分等を含めてその適合性を確認しなければならない。このため、JIS規格品以外でこの品質を確認することは現実的でないことが多く、一般的には,JISに適合することを証明する資料のある製品を使用することになる。

5章 鉄筋工事 3節 加工及び組立

第5章 鉄筋工事 


3節 加工及び組立

5.3.1 一般事項
(a) コンクリートと鉄筋の組合せは、強度のバランス等を考慮して決められる。参考として、コンクリートと鉄筋の組合せの例を表5.3.1に示す。

なお、現在丸鋼は、ほとんど使用されていないので、異形鉄筋に限定して示されている。

表5.3.1 コンクリートと鉄筋鉄骨の組合せの例

鉄筋の加工及び組立に関する規定は、(-社)日本建築学会「鉄筋コンクリート構造計算規準・同解説」2010年版(以下、この節では「RC規準(2010)」という。)、同「JASS 5 鉄筋コンクリート工事」2009年版(以下、この章では「JASS 5 (2009)」という。)並びに同「鉄筋コンクリート造配筋指針・同解説」2010年版(以下、この節では「配筋指針(2010)」という。)に基づいて平成22年版「標仕」の改定時に大幅に見直されており、平成25年版「標仕」の規定も平成22年版を基本的に踏製している。

(b) 熱間圧延鉄筋でも白熱化して空気中で冷却すると鉄筋の性質が変わるので、曲げ加工の場合でも、原則として常温で加工することとしている。

(c) 冷えている鉄筋に点付け溶接を行うと、急熱、急冷されるので焼入れ(7.2.1(b) (5)参照)を行ったことになることから、熱影響部(7.6.7 (k)(2)参照)が著しく硬化し、鉄筋がもろくなり、この部分を少し曲げただけでひび割れが発生する場合があるので、「標仕」ではこれを禁止している。また鉄筋にアークストライクを起こすと 断面欠損が生じたり、局部的な急熱急冷による悪影響があるので、「標仕」ではこれを起こしてはならないとしている。

なお、溶接金網等で鉄筋の交点を電気抵抗溶接としたものは、点付け溶接とは見なさない。

5.3.2 加 工

(a) 鉄筋の切断は、一般にはシャーカッターや電動カッターにより行われているが、ガス圧接や特殊な継手では、切断面の平滑さや直角度が要求されるため、電動カッターや鉄筋冷間直角切断機等を使用することが望ましい。施工済みの鉄筋の手直しや不要な鉄筋の除去のために現場でやむを得ず鉄筋をガス切断する場合は、周囲の鉄筋やコンクリートを傷めないように慎重に施工を行う。ガス切断した鉄筋を溶接継手や機械式継手により再接合する場合は、鉄筋の切断面をグラインダー等で平滑に成形する。

なお、圧接端面となる場合はガス切断を行ってはならない(5.4.5 (b)参照)。

(b) フック及び定着の処置は次による。
(1) 異形鉄筋の柱主筋の継手部で、法規上では不要な図5.3.1の◉印の場合にも「標仕」においてフックを付けることとしているのは、組立のときの間違いや設計変更改修工事等で壁がなくなった場合の混乱を防ぐためである。
※●の出隅部分の継手は建築基準法施行令でフック付き必須

(2) 異形鉄筋の梁主筋の継手部で、図5.3.2の◉印の場合も、(1)と同じ理由から「標仕」ではフックを付けることにしている。
※●の出隅部分の継手は建築基準法施行令でフック付き必須


図5.3.1 柱主筋


図5.3.2 梁主筋

(3) 「標仕」5.3.2(b)(2)の梁主筋の末端部にフックを付ける規定は、図5.3.3のように梁内に継手部がある場合に適用される。


図5.3.3 梁主筋

(4) 柱及び梁の出隅は、火災時に二方向から加熱され、角がはく落しやすく、フックがないと鉄筋の付着効果が期待できなくなるので、建築基準法施行令第73条には上記(1)、(2)及び(3)の内容の規定がある。

(5) 「標仕」5.3.2(b)(1)では、鉄筋の組立の作業性を考慮して、最上階の柱頭の柱主筋のうち、フックを付けるのは四隅だけとしている。ただし、丸柱の場合は四隅に相当する部分がないので、フックなしで定着長さが確保できるならばフックを付ける必要はないが、配筋に無理がなければ、フックを付ける方が望ましい。

(6) 帯筋やあばら筋等のせん断補強筋は、末端部にフックを設ける。ただし、鉄筋の末端部を相互に突合せ電気抵抗溶接した閉鎖型のせん断補強筋を用いる場合はこの限りでない。

なお、溶接閉鎖型せん断補強筋の適用箇所や仕様等は設計図書の特記による。

(c) 鉄筋の折曲げ形状及び寸法は「標仕」表5.3.1による。以前は鉄筋の末端部と中間部を区分して折曲げ形状及び寸法を規定していたが、平成22年版「標仕」の改定時に,JASS 5 (2009)に基づいて末端部と中間部の区分をやめて「標仕」表5.3.1のように一本化しており、平成25年版「標仕」もこれを踏襲している。

なお、鉄筋中間部の90゜未満の折曲げ内法直径は、「標仕」表5.3.1の対象外となるために設計図書の特記によることとなっている。

(d) 高強度せん断補強筋の加工は次による。
(1) 鉄筋の折曲げ形状・寸法は、指定性能評価機関の審査を受けて評定等の技術評価を取得した設計施工指針に従う。

(2) 鉄筋の切断や折曲げ、閉鎖形筋の溶接等の加工は、上記の設計施工指針が対象とする製造工場又は加工工場で行う。その他の作業場や現場では、高強度せん断補強筋の加工を行ってはならない。

5.3.3 組 立

(a) スペーサーは、鉄筋のかぶり厚さを保つために極めて重要なものであり使用部位や所要かぶり厚さに応じて、スペーサーの材種や形状・サイズを使い分けることが大切である。

(b) 市販のスペーサーは、鋼製、合成樹脂製等があるが、「標仕」で、スラブのスペーサーを原則として鋼製としているのは、コンクリート打込み時の鉄筋の脱落等を考慮したためである。

(c) 断熱材打込み部では、普通のスペーサーでは断熱材にくい込み、かぶり厚さの確保が難しいので、めり込み防止の付いた専用スペーサーを用いる。

(d) 下端が打放し仕上げとなる場合のスラブ用スペーサーは、露出面が大きくならないようなものを使用する。また、インサート類の見え掛りとなる部分には調合ペイント又は錆止め塗料を塗り付けるよう「標仕」6.8.6(c)で規定されている。

(e) 「標仕」5.3.3では、型枠に接する部分に防鋳処理を行ったスペーサーを使用することにしている。

なお、防錆処理されたスペーサーには、次のようなものがある。

(1) 「標仕」表14.2.2のC種(JIS H 8641(溶融亜鉛めっき)で2種HDZ35)以上の防錆処理したもの。ただし、海岸等腐食が激しいところで使用する場合には検討が必要である。

(2) 鋼製のものにプラスチックコーティング又はプラスチックパイプを挿入したもの。

(f) 一般に使用されているスペーサーを表5.3.2に示す。
このほかに、梁底、基礎底等に使用するコンクリート製のスペーサーがある。

なお、モルタル製のスペーサーは、強度及び耐久性が十分でないおそれがあるので使用しない。

表5.3.2 スペーサー

(g) 結束線の端部は、かぶり厚さを確保するために内側に折り曲げる。

(h) 柱筋、壁筋等の端部で、安全管理上必要な箇所には、プラスチック製のキャップ等で保護する。

(i) コンクリート打設後の鉄筋の位置が設計図書どおりであり所定のかぶり厚さが確保されるように施工を行う。コンクリート硬化後の鉄筋の位置ずれ修正(台直し)は、その反力によって鉄筋周囲の既設コンクリートを傷めやすいため、原則として行わない。そのため、平成25年版「標仕」では、平成22年版「標仕」5.3.3 (b)の「前に打ち込まれたコンクリートから出ている鉄筋の位置を修正する場合は、鉄筋を急に曲げることなく、できるだけ長い距離で修正する」の記述が削除されており、鉄筋の位置ずれを生じた場合は、極力、台直し以外の是正方法を検討する。やむを得ず現場で台直しを行う場合は、その折曲げ勾配を1/6以下としてできる限り緩やかに曲げて、既設コンクリートを傷めないように慎重に施工する。

5.3.4 継手及び定着

(a) 建築基準法施行令第73条では鉄筋の継手及び定着に関連して、第2項が「主筋又は耐力壁の鉄筋の継手の重ね長さは、……継手を引張り力の最も小さい部分以外の部分に設ける場合にあっては、主筋等の径の40倍以上」と規定しており、同第 3項が「柱に取り付けるはりの引張り鉄筋は、……柱に定着される部分の長さをその径の40倍以上」と規定している。平成19年の施行令改正により、これらに該当する部分の継手や定着の長さは,設計者が保有水平耐力計算等を行い、平成19年国土交通省告示第594号第4の四に基づく検討を行ったうえで特記する場合を除いて施行令第73条の仕様規定が適用されることとなった。

平成22年版「標仕」では、これらの仕様規定とJASS 5 (2009)に準拠して継手及び定着の長さが定められていた。一方、施行令第73条第3項の規定に対しては、「鉄筋コンクリート造の柱に取り付けるはりの構造耐力上の安全性を確かめるための構造計算の基準を定める件」(平成23年4月27日国土交通省告示第432号)によって、「柱に取り付けるはりの引張り鉄筋の付着力を考慮して当該鉄筋の抜け出し及びコンクリートの破壊が生じないことが確かめられた場合においては」適用しなくてよいこととされ、その構造計算の基準としてRC規準(2010)が挙げられている。そのため、平成25年版「標仕」5.3.4 (e)では、柱に取り付ける梁の引張り鉄筋の定着の長さに関する規定のうち、「40d(軽量コンクリートの場合は50d)」という仕様規定が削除されている。

(b) 鉄筋の継手工法としては、重ね継手、ガス圧接継手のほか、施行令第73条第2項のただし書き及び「鉄筋の継手の構造方法を定める件」(平成12年5月31日建設省告示第1463号)に規定される機械式継手と溶接継手があり、「標仕」では適用を特記することとしている。

ガス圧接継手については4節、機械式継手及び溶接継手については5節を参照されたい。

鉄筋工事に使用する材料は、一般にJIS G 3112(鉄筋コンクリート用棒鋼)に規定されているSD295AとSD345があるが、このうちSD295Aは、一般の壁筋、スラブ筋、帯筋、あばら筋等の細物に使用されており、一般の建築物の柱・梁の主筋については通常SD345が使用される。官庁営繕部においては従来よりこの考え方で鉄筋の使い分けがされている。また、最近ではSD390を主筋に用いる例も増えている。

鉄筋の継手工法については、工事の規模、施工場所の地理的条件等を勘案して特記によることとしている。

また、鉄筋の継手は、原則として部材応力の小さいところに設けるものとし、その位置は特記による。

(c) 鉄筋の重ね継手は次による。
(1) 柱及び梁の主筋並びに耐力壁の鉄筋の重ね継手の長さは、特記による。特記がない場合、耐力壁の鉄筋の重ね継手長さは、40d(軽量コンクリートの場合は 50d)と「標仕」表5.3.2の数値(軽量コンクリートの場合は 5d 加算した数値)のいずれか大きい方とする。

(2) (1)以外の鉄筋の重ね継手長さは、「標仕」表5.3.2による。同表は平成22年版「標仕」改定時にJASS 5 (2009)に準拠して改定されており、重ね継手の長さをフックの有無によってL1とL1hに区別して表記している。重ね継手の長さは、フックなしのL1が鉄筋の先端間距離、フックありのL1hが鉄筋の折曲げ開始点間の距離としており、いずれも異形鉄筋の呼び名 d の整数倍としている。L1とL1hの長さの規定は、鉄筋の種類とコンクリート設計基準強度の区分によって細分化されている。軽量コンクリート部材の場合は、従来どおりに普通コンクリートの数値に 5d 加算した継手長さとするが、JASS 5 (2009)では上端筋の重ね継手はフックありを原則としていることに注意する必要がある。

(d) 重ね継手や、ガス圧接継手等では、継手をある箇所に集中して設けるとその部分のコンクリートのまわりが悪くなり構造上の弱点となるおそれがある。そのため、「標仕」表5.3.3 では隣り合う継手は、細径の壁筋、スラブ筋を除き継手位置をずらすこととしている。しかし、最近施工例が増えている鉄筋先組み工法等の柱・梁主筋の場合は、特記により継手位置を同一箇所に設ける場合もある。先組み工法では、ガス圧接継手や機械式継手等が用いられるが、いずれの場合も施工上から、同一位置で全数継ぎとならざるを得ない場合がある。この場合は、鉄筋とコンクリートの断面積比の急変による応力集中やコンクリートの充填性等について、十分に検討されていることが重要である。

(e) 鉄筋の定着は次による。
(1) 柱に取り付ける梁の引張り鉄筋の定着の長さは、「標仕」表5.3.4によるが、定着長さL1とL1h又はL2とL2hの適用箇所は特記による。梁の引張り鉄筋は.常時に引張力が作用する上端筋だけでなく、地震時に引張力が作用する下端筋も適用対象となる。

(2) (1)以外の鉄筋の定着の長さは、「標仕」表5.3.4によるが、定着長さL1とL1h又はL2とL2hの適用箇所は特記による。同表では、定着長さをフックの有無によってL1とL1h、L2とL2h、L3とL3hに区別して表記しており、平成22年版の数値を踏襲している。また、軽量コンクリート部材の鉄筋の定着長さを普通コンクリートの数値 + 5dとしているのも平成22年版と同様である。このうち、割裂のおそれのない箇所への定着長さL2とL2h並びに小梁・スラブの下端筋の定着長さ L3とL3h(小梁の下端筋でフックありの定着長さ)は、JASS 5 (2009)の定着長さに基づいている。これら以外の定着長さL1とL1hは、それぞれ L2、L2hよりも長い定着が必要な箇所に用いることとし、適用箇所は特記による。

なお、適用箇所の例は、国土交通省大臣官房官庁営繕部監修「公共建築工事標準仕様書(建築工事編)」の巻末資料の各部配筋参考図に示されているので、参照されたい。

定着長さの測り方は、「標仕」図5.3.2による。直線定着の長さL1、L2、L3 は、定着起点(通常は仕口面)から鉄筋先端までの距離、フックあり定着の長さL1h、L2h、L3hは、定着起点から鉄筋の折曲げ開始点までの距離とする。フックありの場合の折曲開始点から鉄筋先端までの距離は、フックとして取り扱い、定着長さには含めない。90゜折曲げ定着の場合も同様であり、定着起点から鉄筋の折曲げ開始点までの距離を定着長さとし、それ以降の部分は90°フックとして扱う。

(3) 仕口内に90゜折曲げ定着する場合で、定着起点(仕口面)から折曲げ開始点までの距離Lが、「標仕」表5.3.4のフックあり定着の長さ未満となる場合の鉄筋の定着方法は「標仕」図5.3.3による。すなわち、梁主筋の柱内への折曲げ定着の場合は、仕口面から鉄筋先端までの全長が「標仕」表5.3.4の直線定着長さL2以上、余長が8d以上、仕口面から鉄筋外面までの投影定着長さが「標仕」表5.3.5のLa以上とする。

なお、梁主筋の投影定着長さLaは、原則として柱せいの3/4倍以上とする。

小梁・スラブの上端筋の梁内への折曲げ定着の場合は、仕口面から鉄筋外面までの投影定着長さが「標仕」表5.3.5のLb以上であるほかは、梁主筋の定着の場合と同様に、全長がL2以上、余長が8d以上とする。

なお、小梁・スラブの上端筋を壁内や幅の狭い梁内に定着する際に投影定着長さが「標仕」表5.3.5のLb未満となる場合は、RC規準(2010)に従って算定された投影定着長さの特記によるか、特記がない場合は、配筋指針(2010)に従って鉄筋の余長を直線定着長さL2以上とする。この場合は、鉄筋の投影定着長さを8d以上、かつ、150mm以上とすることが望ましい。

(4) 「標仕」では規定されていないが、機械式定着具を用いる場合の仕様や定着長さは特記による。機械式定着具は、指定性能評価機関による審査を受けて評定等の技術評価を取得した設計施工指針に従って施工する。

(f) その他の鉄筋の継手及び定着は「標仕」5.3.4 (f)による。

5.3.5 鉄筋のかぶり厚さ及び間隔

(a) 鉄筋のかぶり厚さ
(1) 「標仕」表5.3.6に規定される鉄筋の最小かぶり厚さは、建築基準法施行令第 79条に規定されるかぶり厚さを基本とし、仕上げなし(柱・梁・耐力壁では屋外で仕上げなし)の場合は10mm加算した数値としている。かぶり厚さが小さいと、火災時に部材の構造耐力が低下したり、過大なたわみや変形を生じたりするほか、地震時に鉄筋のコンクリートに対する付着性能が低下し、付着割裂破壊等の脆性破壊を生じたりする。また、コンクリートの中性化がかぶり厚さ以上に進行すると、酸素と水分の作用によって鉄筋が腐食されやすくなる。このように鉄筋のかぶり厚さは、部材の耐火性、耐震性、耐久性に重大な影響を与えるので、建物の全体において守られていないと重大な欠陥を生じることになる。

(2) 「標仕」5.3.5(b)では、鉄筋の加工及び組立においては最小かぶり原さを確保するために、施工誤差を考慮し、施工に当たっては柱・梁等の鉄筋かぶり厚さの最小値に 10mmを加えて(主筋を10mm内側に入れて)「加工」することとしている。ここでは、加工に用いるかぶり厚さの「最小の基準寸法」は定めているが、「最大の寸法」は規定していない。これは、梁と梁、梁と柱等の主筋が交差することによって生じる必然的な位置のずれが避けられないためである。

ただし、かぶり厚さが必要以上に大きいと、構造上の重大な欠陥となる場合があるので、施工図等で十分検討された鉄筋の位置について精度を確保することが重要である。特に、スラブ筋(端部上端筋,中央下端筋)、片持スラブの上端筋、地下外壁、断面の小さい部材等でかぶり厚さを規定以上に大きく取ることは、重大な欠陥の原因や鉄筋相互のあきが確保できないなどのおそれがある。鉄筋の納まりにより配筋位置が下がる場合は、設計担当者と打ち合わせて、構造安全性が確保されるようにしなければならない。

なお、JASS 5(2009)では、計画供用期間の級に応じて構造部材・非構造部材の設計かぶり厚さが規定されており、鉄筋工事においては、設計かぶり厚さを目標に鉄筋の加工・組立を行い、鉄筋組立完了時に最小かぶり厚さ以上を確実に確保することとしている。

(3) 柱、梁筋のかぶりは、図5.3.4のように主筋の外周りを包んでいる帯筋、あばら筋の外側から測定する。

なお、図中の最小かぶり厚さに加える10mmは、施工誤差の標準値である。


図 5.3.4 かぶり厚さ

(4) 異形鉄筋で D29以上の太物を使用する場合は、付着割裂破壊を考慮し、「標仕」5.3.5(a)では、主筋のかぶり厚さを径の1.5倍以上としている。

なお、RC規準(2010)では、コンクリートのかぶり厚さが鉄筋の径の1.5倍未満の場合には、許容付着応力度を(かぶり厚さ)/(鉄筋径の1.5倍)の数値を乗じて低減することとしているので、主筋に限らず部材の最外縁の鉄筋径が、「標仕」表5.3.6の最小かぶり厚さの 2/3倍以上の場合には、設計担当者と打ち合わせて、当該箇所のかぶり厚さを指示する必要がある。

(5) 海に近い場合で海塩粒子の浸透を考慮する場合や、コンクリートの劣化を促進させる物質のある場合等は、特記により「標仕」表5.3.6の最小かぶり厚さを割り増しする場合もあるので注意する。

なお、コンクリート中に鉄筋に有害な塩化物が含まれる場合のかぶり厚さの割増しは、6.3.2(2)⑦を参照する。

(6) 鉄筋のかぶり厚さは、仕上げの有無、屋内と屋外、また、土に接しているかどうかにより異なる。このため、同一部材であっても部分的に必要かぶり厚さの異なる場合があるので、あらかじめ、施工図等によりかぶりの取り方を十分検討しておく。

図5.3.5及び6に柱脚及び外周に面する場合を示す。


図5.3.5 土に対する柱筋の鉄筋のかぶり


図5.3.6 外周に面する梁筋のかぶり

(7) 図5.3.7に示す打継ぎ目地部分は、シーリングが長時間たつと劣化することや温度変化や乾燥収縮が起こりやすいことから仕上げなしと見なして、目地底よりかぶりを確保する。


図5.3.7 打継ぎ目地部分のかぶり厚さ

(8) 近年は主筋のみでなく、あばら筋、帯筋にも機械式継手を用いる例が見られる。機械式継手等を用いた場合、継手部にて最小かぶり厚さが決まることがあるので注意が必要である。

(b) 鉄筋相互のあき及び間隔
(1) 鉄筋相互のあきは、粗骨材の最大寸法の1.25倍、25mm及び隣り合う鉄筋の平均径(呼び名の数値)の1.5倍のうち最大のもの以上とする。

(2) 鉄筋の間隔は、(1)によるあきに鉄筋の最大外径を加えたものとする。(「標仕」図5.3.6参照)

なお、異形鉄筋の最大外径(D)は、表5.3.3及び図5.3.8による。


図5.3.8 異形鉄筋の公称直径と最大外径

表5.3.3 異形鉄筋の径(mm)

5.3.6 鉄筋の保護

(a) スラブの上端筋の下がり及び乱れが多く見られるが、これは構造耐力上危険である。

特に、コンクリートポンプによる打込みの際の乱れが多いので注意する。コンクリート打込みに際しては、直しの鉄筋工を配置する。道板等を用いて直接鉄筋の上を歩かないようにするとともに、配筋の下がりを防止するために一般のスラブにおいても、四周の上端に受け筋(D13)を配置することが推奨される。ただし、受け筋の位置にDl3の主筋がある場合には,それを兼用してよい。

一般に、スラブ筋の乱れの原因については、次のような場合が考えられる。

(1) スペーサー等の数が不足している場合
(2) スペーサーが確実に取り付けられていない場合
(3) スラブ配筋後、材料を鉄筋上に直接置く場合
(4) 設備配管等を行うことにより乱される場合
(5) コンクリートの打込み中に乱される場合(コンクリート輸送管の揺れ、ホースの移動、コンクリートの運搬、歩行等)

なお、他の部材に比べてかぶり厚さが少なく厳しい精度が要求されるスラブ配筋では、連続バーサポートを利用する方法もある。また、スラブ筋はコンクリート打込み等の作業時に乱されるおそれがあることからも連続バーサポートは有効と考えられる。

(b) 硬化し始めたばかりのコンクリート中の鉄筋に振動を与えると、付着力が低下するので振動を与えないように注意する。

(c) スペーサーの個数は、表5.3.4を標準とする。また、スラブ下端筋の梁際は、かぶり厚さが足りなくなることが多いので注意する。

表5.3.4 スペーサーの個数の標準

5.3.7 各部配筋

平成19年版「標仕」では、特記がない場合の各部配筋は別図によることとされていたが、平成22年版以降は各部配筋は特記によることされ、別図が削除されている。代わりに、国土交通省大臣官房官庁営繕部監修「公共建築工事標準仕様書(建築工事編)」の巻末資料に各部配筋の参考図が掲載されているので、必要に応じて参照されたい。

5章 鉄筋工事 4節 ガス圧接

第5章 鉄筋工事 


4節 ガス圧接

5.4.1 適用範囲

ガス圧接工法は、接合しようとする鉄筋の端面を平滑に加工したのち、端面を突き合わせ、その突合せ部をガス炎で加熱し、同時に鉄筋軸方向に圧縮力を加えて接合する方法である。熱源としてのガス炎は、酸素とアセチレンの混合ガスによる酸素・アセチレン炎を使用する。

「標仕」の4節では、圧接方法を手動ガス圧接とすることを前提とした仕様を規定している。酸素・アセチレン炎によるこのほかの圧接方法には、自動ガス圧接や熱間押抜きガス圧接があり、それぞれ、(公社)日本鉄筋継手協会が標準仕様書を定めている。このうち、自動ガス圧接については、(公社)日本鉄筋継手協会の標準仕様書に優先して「標仕」を適用することが可能であるが、熱間押抜きガス圧接は圧接工程のなかでふくらみを除去するために「標仕」で規定する試験を行うことができない。したがって、本節では「標仕」の規定が適用可能な手動ガス圧接と自動ガス圧接の監理について記述するほか、熱間押抜きガス圧接を「標仕」以外の圧接工法として記載している。

なお、「標仕」では、鉄筋材料としてSD490を適用範囲に含まないため、4節でも SD490の仕様については規定していない。したがって、特記によりSD490を採用する工事においては、そのガス圧接の仕様も特記に定められた方法によらなければならない。(公社)日本鉄筋継手協会「鉄筋継手工事標準仕様書 ガス圧接継手工事(2009年)」及びJASS 5(2009)では、SD490のガス圧接を行う場合には施工前試験を行うこととしているので注意する。

また、「標仕」以外のガス圧接工法として、酸素・天然ガス炎による圧接工法が開発されている。一般のガス圧接よりも大きなふくらみとする天然ガス圧接工法と、圧接端面に高分子材料を挟み込んで加熱して一般のガス圧接と同等のふくらみとする高分子天然ガス圧接工法がある。いずれも、(公社)日本鉄筋継手協会が同工法の標準仕様書(案)を定め、検定試験により高分子天然ガス圧接技量資格者の認証を行っている。

5.4.2 技能資格者

(a) 圧接作業に従事する技能資格者は、JIS Z 3881(鉄筋のガス圧接技術検定における試験方法及び判定基準)による技量を有する者で、当該工事に使用する鉄筋に相応した技量資格種別を有することが必要である。圧接作業に先立ち、技量資格証明書等を提出させて、その技量を確認する。

(b) (公社)日本鉄筋継手協会では、JIS Z 3881に基づいて手動ガス圧接技量資格者及び自動ガス圧接技量資格者の試験を行って技量を認証し、それぞれの技量資格証明書を発行している。

技量資格種別による可能範囲は、表5.4.1及び2のとおりである。

表5.4.1 手動ガス圧接技量者の圧接作業可能範囲

表5.4.2 自動ガス圧接技量資格者の圧接作業可能範囲

(c) 「標仕」1.2.2では、工種別施工計画書の提出を義務付けているが、ガス圧接工事に関して受注者等が作成する圧接施工計画書は、(公社)日本鉄筋継手協会が認定する鉄筋継手管理技士又は圧接継手管理技士の助言等を受けて作成することが望ましい。

5.4.3 圧接部の品質

(a) 圧接継手に要求される性能は、鉄筋母材と同等以上の継手強度が得られることであり、これを保証するための代用特性の一つとして圧接部の外観と内部欠陥がないことを規定している。「標仕」に規定する圧接部の品質の各項目は.「鉄筋の継手の構造方法を定める件」(平成12年5月31日建設省告示第1463号)の規定に対応するものである。

(1) ガス圧接では圧接作業の最終工程でふくらみを形成することによって圧接面にできた酸化物を拡散することができる。ふくらみの直径が鉄筋径の1.4倍以上あれば酸化物が拡散し、母材と同等以上の継手強度が安定して得られることが実験的に確かめられている。

(2) 圧接部のふくらみはできるだけなだらかな形状となっていることが力学的に好ましい。ふくらみの長さを大きくしてなだらかな形状にするためには幅焼きの範囲を広くする必要があるが、作業能率の面から幅焼きはある程度の幅にとどめた方がよい。鉄筋径の1.1倍程度以上のふくらみ長さであれば十分な継手強度が確保できることが確認されている。このふくらみ長さが得られるための幅焼きの範囲は鉄筋径と同程度である。

(3) 圧接面のずれは、圧接作業中に接合する鉄筋の突合せ面からずれた位置で加熱することによって生じる。加熱位置がずれると鉄筋同士で温度上昇が異なり適正な圧接温度に達しないままの圧接となり,良好な接合が得られない。圧接面のずれが鉄筋径の1/4以上になると十分な継手強度を確保できなくなる可能性がある。

(4) 圧接部における鉄筋中心軸の偏心量は、施工の良否の指標の一つであり、管理限界値は鉄筋径の1/5以下としている。

(5) 圧接部に折れ曲りがある場合には継手の軸剛性が低下する。平成19年版では、折れ曲りの管理限界値は 3.5° 以上を目安とするとしていたが、鉄筋組立精度を向上する目的で、「鉄筋継手工事標準仕様書 ガス圧接継手工事(2009年)」に折れ曲りを 2°以下とする規定が定められたことを踏まえ、折れ曲りは 2°以下とするのがよい。

(6) 圧接部の片ふくらみは継手の強度に影響を及ぼすおそれがあることから、平成22年版「標仕」で監理項目に追加された。片ふくらみは圧接器の固定が不十分な場合や鉄筋端面の隙間が大きい場合に生じる。ふくらみの小さい側の圧接面には十分な加圧力が作用せず不完全な接合となり、圧接部の引張強さが低下することがある。管理限界値は、ふくらみ量の差が鉄筋径の 1/5以下としている。

(7) 「鉄筋の継手の構造方法を定める件」における圧接継手に関する規定の抜枠を次に示す。

なお、この告示のただし書きでは、繰返し加力等の実験によって耐力、靭性及び付着に関する性能が継手を行う鉄筋と同等以上であることが確認された場合は、告示で定める構造方法によらなくてよいとしている。(公社)日本鉄筋継手協会の自主的認定事業として、これらの性能の確認実験を行い、一定水準以上の施工管理の能力及び体制を有していれば、実験結果と同等以上の施工品質が確保できるとして「A級継手圧接施工会社」を認定しているので、参考にするとよい。

鉄筋の継手の構造方法を定める件
(平成12年5月31日 建設省告示第1463号)建築基準法施行令(昭和25年政令第338号)第73条第2項ただし書き(第79条の4において準用する場合を含む。)の規定に基づき、鉄筋の継手の構造方法を次のように定める。1 建築基準法施行令(以下「令」という。)第73条第2項本文(第79条の4において準用する場合を含む。)の規定を適用しない鉄筋の継手は、構造部材における引張力の最も小さい部分に設ける圧接継手、溶接継手及び機械式継手で、それぞれ次項から第4項までの規定による構造方法を用いるものとする。ただし、一方向及び繰り返し加力実験によって耐力、靭性及び付着に関する性能が継手を行う鉄筋と同等以上であることが確認された場合においては、次項から第4項までの規定による構造方法によらないことができる。

2 圧接継手にあっては、次に定めるところらよらなければならない。

一 圧接部の膨らみの直径は主筋等の径の1.4倍以上とし、かつ、その長さを主筋等の径の1.1倍以上とすること。

二 圧接部の膨らみにおける圧接面のずれは主筋等の径の1/4以下とし、かつ、鉄筋中心軸の偏心量は、主筋等の径の1/5以下とすること。

三 圧接部は、強度に影響を及ぼす折れ曲がり、焼き割れ、へこみ、垂れ下がり及び内部欠陥がないものとすること。

3 (5.5.3 (a)に記載)

4 (5.5.2 (a)に記載)

鉄筋の継手の構造方法を定める件

(b) ガス圧接継手の品質の良否は、圧接業者の品質管理体制によるところが大きい。

(公社)日本鉄筋継手協会では、品質管理要員として、①圧接計画書の作成又はその指導を行い、②その計画書に従って圧接作業が実施されていることの確認等を行う「鉄筋継手管理技士」及び「圧接継手管理技士」を認証している。

また、同協会では、圧接管理技士及び圧接作業の技量資格者の質と量、圧接機器、検査機器等の保有状況及び品質管理システムの運用状況等を審査し、品質管理体制が確立、維持されている圧接会社を「優良圧接会社」として認定しているので、参考にするとよい。

5.4.4 圧接一般

(a) 圧接装置
(1) 圧接装置は、加熱器、加圧器、圧接器からなり、これらの性能が圧接継手の良否や作業能率を左右する。圧接装置には手動ガス圧接装置と自動ガス圧接装置がある。前者は加圧器の動作及び加熱器の揺動を手動で行うものである。後者は加圧器の動作及び加熱器の揺動をプログラム制御するものである。手動ガス圧接装置の中には、加熱器の揺動は手動とし、加圧器の動作をプログラム制御する方式のものもある。

また、引張試験の際に、鉄筋が圧接器の締付け部から脆性的に破断することが ある。これは、圧接器の締付けボルトの先端形状によって鉄筋表面に圧痕が生じ、この圧痕が起点となって破断するものであり、締付けボルトの先端形状と締付けトルクが過剰とならないように注意する必要がある。締付けボルトの種類は、鉄筋表面に切欠き状の圧痕が生じない形状のものがよい。

(2) 圧接作業前には圧接装置・器具類の整備・点検を十分行って、不良圧接の原因となる不具合を排除するとともに、ガス漏れ、引火等による爆発事故を防止する。

(3) 参考として、(公社)日本鉄筋継手協会「鉄筋継手工事標準仕様書ガス圧接継手工事」の圧接装置に関する規定の抜粋を次に示す。

鉄筋継手工事標準仕様書 ガス圧接継手工事(2009年)

4.2 圧接装置
(1) 加熱器
a. 加熱器は吹管本体及び火口本体からなり、吹管本体は、JIS B 6801(手動ガス溶接器)に規定するもののうちB型溶接器のB1、B2号に適合するものとする。

b. 吹管本体の材質・品質・寸法などは、JIS B 6801に準拠するものとする。

c. 火口本体は、作業中の炎の安定性がよく、鉄筋径に適合した十分な加熱能力を有するものとする。

d. 火口先は、鉄筋表面を円周方向に均等に加熱できるものとする。

(2) 圧接器
a. 圧接器は、鉄筋に所定のアプセット量(縮み量)を与えることができる機構を有し、作業中に偏心、曲がりが生じないよう、十分な鉄筋の保持能力を有するものとする。

b. 鉄筋保持するための締付けボルトは、その先端が鉄筋に有害な傷を与えない形状のものとする。

(3) 加圧器
加圧器は、油圧器、高圧ホース及びラムシリンダーからなり、次の性能を有するものとする。

a. 加圧器は、電動式で、加熱と連動しながら加圧操作できるものとする。

b. 加圧器は、鉄筋断面(異形棒鋼の場合は、公称断面)に対し30MPa以上の加圧能力を有するものとする。また、SD490の場合は、鉄筋断面に対して40MPa以上の加圧能力を有し、上限圧及び下限圧を設定できる機能を有するものとする。

5.2 圧接装置
自動ガス圧接装置は、圧接施工記録の作成・出力が可能で、(社)日本鉄筋継手協会の認定を受けたものとする。

鉄筋継手工事標準仕様書 ガス圧接継手工事(2009年)

(b) 原則として圧接をしない場合

(1) 平成22年版までの「標仕」では、鉄筋の種類が異なる場合、形状が著しく異なる場合及び径の差が5mmを超える場合は圧接をしないこととしていたが、SD345とSD390の鉄筋間の圧接は特記に基づいて一般的に行われていた。平成 25年版「標仕」では、こうした実情を踏まえて、鉄筋の種類についてSD345と SD390の圧接を許容するただし書きが追加された。したがって、特記により仕様が示される場合を除き、SD345とSD390の組合せ以外の種類が異なる鉄筋の場合、形状が著しく異なる場合及び径の差が5mmを超える場合は、圧接を行ってはならない。

(2) 径の差が大きい場合、鉄筋の熱容量が異なるために相互の鉄筋の温度上昇に差異が生じて圧接不良が生じる場合があることから、「標仕」では径の差を5mmまでに制限している。鉄筋には、D19、D22、D25、D29のように径に応じた呼び名があるが、D22とD29のように呼び名が2段階異なる場合を2段落ちあるいは2サイズ違いという。2段落ちの場合は径の差が5mm以上となるので、特記がない限り圧接してはならない。

(3) これに関連する場合のガス圧接について、(公社)日本鉄筋継手協会の資料では、次の(i)から(iii)までが示されている。

(i) 「鉄筋継手工事標準仕様書ガス圧接継手工事(2009年)」ではJIS G 3112(鉄筋コンクリート用棒鋼)に適合する範囲で強度区分が隣接する種類の鉄筋間の圧接は可能としており、「異種・異径鉄筋の圧接継手性能評価に関する調査研究」でその性能が検証されている。

(ii) ねじ節鉄筋とねじ節鉄筋及び竹節鉄筋とねじ節鉄筋のガス圧接については、「ねじ節鉄筋のガス圧接継手性能に関する研究」で性能確認がなされているが、「鉄筋継手工事標準仕様書ガス圧接継手工事(2009年)」にはねじ節鉄筋の圧接についての記載はない。

(iii) 製造所が異なる鉄筋のガス圧接については、「鉄筋継手工事標準仕様書 ガス圧接継手工事(2009年)」で圧接可能としているが、SD490についてはデータが少ないので十分な事前検討が必要としている。

5.4.5 鉄筋の加工

(a) ガス圧接では、1箇所当たり1d~1.5d (d:鉄筋の径)のアプセット〈縮み代〉が必要である。このため、梁筋や柱筋の定着長さが不足することがあるので、あらかじめ圧接による鉄筋の縮み代を見込んで鉄筋の加工を行う。

(b) 突き合わせた鉄筋の圧接端面間の隙間が大きいと圧接面が酸化しやすく、圧接部の強度が低下するおそれがある。そのため、鉄筋の圧接端面は、軸線にできるだけ直角、かつ、平滑に切断・加工し、圧接端面間の隙間をできるだけ少なくする必要がある。

従来の定置型せん断切断機によって切断された鉄筋の端部は端曲がりが生じているものが多く、再切断が必要となる場合もある。この再切断には、鉄筋冷間直角切断機を用いるのがよい。この切断機で切断し、当日圧接を行う場合にはグラインダーで研削する必要がない程度の端面が得られる。ただし、ばりが生じた場合にはこれを除去する。また、携帯型せん断切断器等を用いる方法もある。これらの方法による場合は、切断した端面をグラインダーで有害な切断跡がなくなるまで研削する必要がある。

5.4.6 圧接端面

圧接部の品質の良否は圧接端面の状態(図5.4.1参照)に大きく左右されるので、圧接端面の処理は圧接作業において極めて重要である。

(1) 圧接端面及び端面から100mm程度の範囲の鉄筋表面に錆、油脂、塗料、セメントペースト等が付着している場合には、これらをあらかじめ除去しておく必要がある。

(2) 圧接端面を平滑に仕上げることが良好な圧接継手とする基本であり、冷間直角切断機等を使用して切断することが望ましい。また、ばり等がきょう雑物として圧接端面に入り込まないように軽く面取りを行う必要がある。

(3) 圧接端面は完全な金属肌の状態でなければ良好な接合が得られないので、冷間直角切断機による端面処理やグラインダー研削は圧接作業当日に行い、錆がないことなど、端面の状態を確認する必要がある。このような状態に仕上げられていることの確認を、施工者の自主管理として全数行い、監督職員も抜取り的に確認するのがよい。また、圧接作業の前日以前に、鉄筋加工場や現場において圧接端面の処理を行うに当たり、処理後の防錯等のために、(公社)日本鉄筋継手協会が認定した端面保護剤が使用されることもある。


図5.4.1 圧接端面の状態

5.4.7 天候による処置

(a) 寒冷期には、溶解アセチレンの気化率が悪いため、温湯、専用電熱器又は照明具等を用いて容器を加温して気化を促進する場合がある。この場合、容器は40℃以上にならないように注意する。

なお、火気による加温は労働安全衛生規則第256条によって厳禁とされている。

(b) 高温期における容器は40℃以下に保つようにする。夏期の野外では直射日光を避けるため容器をシートで覆うなどの処置を講ずる。

(c) 一般作業のできる程度の降雨量であれば健全な圧接ができることが実験的に確認されているが、降雨雪に気をとられて圧接作業に集中できず不良圧接を生じかねないので、降雨雪時の圧接作業は中止とする。ただし、適切な防護を施せば作業を行ってもよい。

圧接時に強風が当たると炎が吹き流され、圧接面が酸化しやすく不良圧接になることがあるので注意する。やむを得ず強風下で圧接を行う場合には、完全な遮へいを施して圧接作業を行う。

5.4.8 圧接作業

(a) 鉄筋に圧接器を取り付けて突き合わせた場合の圧接端面間の隙間は鉄筋径にかかわらず2mm以下とする。この値は現場における管理限界を示したもので、基本はあくまでも隙間をなくすことである。平成19年版「標仕」では、この値を3mm以下としていたが「鉄筋継手工事標準仕様書 ガス圧接継手工事(2009年)」が隙間を2 mm以下とする規定に改訂されたことに合わせ、平成22年版「標仕」で2mm以下とするように改められた。また、偏心、曲がりがあると、圧接面全体に十分な加圧ができず、不良圧接になりかねないので、これらの有無を確認する必要がある。

(b) 圧接する鉄筋の軸方向へ母材断面に対して30MPa以上の加圧を行いつつ、加熱炎が突き合わせた鉄筋の圧接端面からはずれないようにし、圧接端面相互が密着するまで還元炎で加熱する。

鉄筋の圧接には、酸素及びアセチレンの混合ガスによる酸素・アセチレン炎が用いられる。このガス炎は、それぞれのガスの供給量の割合に応じて中性炎(標準炎)、還元炎(アセチレン過剰炎)、酸化炎(酸素過剰炎)に分類される(図15.4.2参照)。圧接の初期加熱時に圧接端面間の隙間が閉じるまでは加熱中における圧接端面の酸化を防ぐために鉄筋の中心まで届くフェザー長さの還元炎で端面を完全に覆うようにして加熱し、端面相互が密着したあとは、火力の強い中性炎で圧接面を中心としてバーナーを左右に揺動しながら加熱する。

接合の良否は、圧接端面相互が密着するまでの初期加熱時に端面が還元炎で十分に覆われていたかどうかによって決まることをよく認識しておく必要がある。


図5.4.2 中性炎(標準炎)と還元炎(アセチレン過剰炎)

(c) 圧接端面相互が密着したのちは還元炎より熱効率の高い中性炎で加熱する。
なお、突合せ部を集中的に加熱すると、圧接面の中心部まで適正な圧接温度(約1,250 ~ 1,300℃)に達しないうちに鉄筋表面部のみが溶融し、正常な圧接が困難となる。したがって、圧接面を中心に鉄筋径の2倍程度の範囲を揺動加熱(幅焼き)する。

(d) 圧接終了直後に圧接器を取り外すと、鉄筋の重みにより赤熱されている圧接部のふくらみ終端部あたりから容易に折れ曲りが生じるため、火色消失後に圧接器の取外しを行う必要がある。

(e) 加熱中にバーナー不調のために逆火等が生じて加熱を中断した場合、そのまま再圧接すると圧接面が酸化して不良圧接となるおそれがあるので,冷間直角切断機等を使用して圧接部を切り取り再圧接する必要がある。ただし、圧接端面相互が密着したあとであれば圧接面の酸化は生じないので再加熱して圧接作業を続行してもよい。

5.4.9 圧接完了後の試験

「標仕」では、圧接完了後に圧接箇所の全数について外観試験を行い、その後、超音波探傷試験又は引張試験による抜取試験を行うこととしている。

なお、ここでいう「抜取試験」は、一般には「抜取検査」と呼ばれている。

(1) 外観試験
(i) 圧接部のふくらみの形状及び寸法、圧接面のずれ、圧接部における鉄筋中心軸の偏心量、圧接部の折れ曲り、片ふくらみ、焼割れ、へこみ、垂下がりについて外観試験を行い、結果を記録する。

① 圧接部のふくらみの形状及び寸法については、図5.4.3に示すように、ふくらみの直径は母材鉄筋径の1.4倍以上、ふくらみの長さは母材鉄筋径の1.1倍以上でなければならない。圧接部のふくらみの外周に軸方向の小さなひび割れが発生することがあるが、これは鉄筋のアプセットに伴うもので、多少のひび割れは特に支障はない。ただし、ひび割れが著しい場合には欠陥となるので、加熱温度、加熱時間、加圧速度等を再検討して,ひび割れの発生を防ぐ。


図5.4.3 圧接部のふくらみの形状及び寸法

② 圧接面のずれは、図5.4.4による。圧接面のずれとは.圧接面がふくらみの中央からずれた位置に存在する場合をいう。これは、加熱位置が鉄筋を突き合わせた位置からずれてしまい、加熱が片方の鉄筋に偏り、適正な圧接作業が行われなかったことを示すものである。ずれが大きくなると強度の低い不良圧接となるので注意する必要がある。


図5.4.4 圧接面のずれ

③圧接部における鉄筋中心軸の偏心量は図5.4.5による。偏心量の大小は、施工の良否を示す指標の一つであるので注意する。


図5.4.5 圧接部における鉄筋中心軸の偏心量

④鉄筋同士の角度が 2°以上となる圧接部の折れ曲りがあってはならない。

⑤圧接部の片ふくらみは図5.4.6による。


図5.4.6 圧接部の片ふくらみ

(ii) ①~⑤の外観試験の方法は目視によって行い、必要に応じて外観試験用測定治具を使用するとよい。圧接部測定用ゲージを用いると、簡単に圧接部の形状や軸心の食違い等を測ることができ迅速な試験が可能となる(図5.4.7参照)。


(イ)デジタルノギス


(ロ)圧接部測定ゲージ
図5.4.7 外観試験用測定治具の例

(iii) 外観試験は比較的簡単に実施できるので全圧接部を対象としている。

(2) 抜取試験
ガス圧接部の抜取試験には超音波探傷試験と引張試験があるが、「標仕」では、特記がない場合には、超音波探傷試験によるとしている。ただし、特定行政庁によっては引張試験を行う基準を運用していることがあるので、事前に確認しておく必要がある。

① 超音波探傷試験は、次のような特徴がある。
1) 非破壊試験であり、検査のための切取りによる再圧接がない。
2) 試験の抜取り箇所数を増減することができ、必要に応じて全数検査も可能である。
3) 試験従事者の技量に信頼性が依存する。
4) 工事現場において試験ができ、すぐ結果が分かる。

② 引張試験は.次のような特徴がある。
1) 切取りによる破壊試験であり、抜き取った継手の品質を直接的に確認できる。
2) 切取りによる全数検査は、不可能である。
3) 切取りによる再圧接箇所数が増える。
4) 試験結果を得るまでに時間がかかることが多い。

(3) 超音波探傷試験による抜取試験
(i) 超音波探傷試験の試験箇所数
「標仕」では、超音波探傷試験における抜取試験のロットの大きさを1組の作業班が1日に施工した継手箇所としている。1ロットの継手数は、鉄筋の径や継手位置等によって異なり、D22の場合100〜200箇所、D32の場合80〜 150箇所、D38の場合50〜100箇所程度と想定される。また、試験の箇所数は1ロットに対して30箇所であり、ロットから無作為に抜き取る。

(ii) 超音波探傷試験の方法と合否判定基準
超音波探傷試験は、鉄筋軸線に対して20度領いた超音波ビームを圧接面に当てて、圧接面に欠陥がある場合に検知される反射波の強さを測定する試験である。

超音波探傷試験の試験方法及び判定基準は、JIS Z 3062(鉄筋コンクリート用異形棒鋼ガス圧接部の超音波探傷試験方法及び判定基準)によるが、この規格の合否判定基準は、図5.4.8に示す欠陥からの反射波の強さと圧接部の引張強さの相関について調べた実験結果に基づいて定められている。図5.4.8において、横軸は鉄筋母材を透過させたときの透過波の強さ(基準レべルという。)に対する反射波の強さの比(エコー高さ)を示し、縦軸には同じ継手を引張試験して得られた圧接部の引張強さを鉄筋母材のJIS規格引張強さの下限値で除した値を示している。この図の関係より、基準レベルに対して-24dB(反射波の強さは基準レベルの約1/250)以上のエコー高さを示す圧接部を不合格とし、-24dB未満を合格としている。


図5.4.8 エコー高さと引張強さの関係

JIS Z 3062(鉄筋コンクリート用異形棒鋼ガス圧接部の超音波探傷試験方法及び判定基準)の抜粋を次に示す。

JIS Z 3062 : 2009

1 適用範囲
この規格は、JIS G 3112に規定する異形棒鋼(以下鉄筋という。)のガス圧接部の超音波探傷試験方法及び試験結果の判定基準について規定する。

3 用語及び定義
この規格で使用する用語の定義は、JIS Z 2300によるほか、次による。

3.1 リブ間距離
鉄筋の表面突起のうち、 軸線方向の突起をリブといい、この相対するリブ外面間の距離(図1参照)。


図1 – 鉄筋リブ間距離

3.2 透過走査
相対するリブの上に探触子を配置し、一方の探触子の超音波送信パルスを他方の探触子で受信する方法。

3.3 基準レベル
透過走査で求められる透過パルスの最大値。

3.4 合否判定レベル
基準レベルに基づいて、試験結果を判定するために定めたレベル。

3.5 はん(汎)用探傷器
基本表示のパルス反射式超音波探傷器。

3.6 専用探傷器
鉄筋ガス圧接部の探傷のために操作を簡易化したパルス反射式超音波探傷器。

4 試験技術者
鉄筋ガス圧接部の探傷試験を行う技術者は、超音波探傷試験の原理及び鉄筋ガス圧接部に関する知識をもち、かつ、その超音波探傷試験方法について十分な技術及び経験をもつ者とする。

5 探傷装置の機能及び性能
5.1 探傷装置の機能及び性能
探傷装置は、次の機能及び性能をもつものとする。
a) はん用探傷器の機能及び性能
はん用探傷器の機能及び性能は、附属書Aによる。(附属書A省略)

b) 専用探傷器の機能及び性能
専用探傷器の機能及び性能は、附属書Bによる。(附属書B省略)

5.2 探触子の性能
探触子の性能は、附属書Cによる。(附属書C省略)

5.3 接触媒質
接触媒質は、濃度75%(質量分率)以上のグリセリン水溶液、グリセリンペースト又は音響結合がこれらと同等以上と確認されたものとする。

5.4 探傷装置の点検
探傷装置は、次の点検を行い異常の有無を確認する。

a) 点検の種類及び時期
1) 始業時点検
始業時の点検は、探傷作業開始前に行う。

2) 作業中点検
作業中の点検は、作業中1時間ごと、又は1時間以内であっても少なくとも試験箇所20か所ごとに行う。

3) 終業時点検
終業時の点検は、探傷作業終了後速やかに行う。

4) 定期点検
定期点検は、1年に1回以上行う。

5) 特別点検
特別点検は、次の場合に行う。

5.1) 探傷装置の修理を行ったとき。
5.2) 探傷装置の一部を交換したとき。
5.3) その他特別に点検する必要があると認められたとき。

b) 点検の方法
1) 始業時、作業中及び終業時の点検方法は、次による。
1.1) 透過走査を行って基準レベルが設定できることを確認する。
1.2) 基準レベルに基づいて合否判定レベルを設定した後、透過走査を行って透過パルスが容易に受信できることを確認する。

2) 定期点検及び特別点検は、次による。
2.1) はん用探傷器の点検方法は、JIS Z 2352による。
2.2)専用探傷器の定期点検方法は、附属書Dによる。(附属書D省略)

c) 異常の場合の処置
a)及びb)の点検で異常が発見された場合の処置は、次による。
1) 点検で異常が認められた探傷装置は、使用しない。
2) 作業中及び終業時点検で異常が認められた場合には、その点検の直前の点検以降に実施した試験は無効とする。

6 探傷試験の準備

6.1 確認事項
探傷試験を開始する前に、鉄筋の種類、呼び名及びリブ間距離(図1参照)を確認する。

6.2 探傷の時期
探傷試験は、圧接部の温度が常温になってから行う。

6.3 探傷面の手入れ
探触子を接触させるリブ上の探傷面に、超音波の伝達を妨げるもの(浮いたスケール、コンクリート、セメントペースト、著しいさび、塗料など)が存在する場合には、これらを除去する。

7 探傷装置の調整
7.1 測定範囲の調整
測定範囲の調整は、次による。
a) はん用探傷器
はん用探傷器の場合には、探傷する鉄筋の透過パルスが時間軸の範囲に表示できるように、JIS Z 2345に規定する標準試験片(STB-A3)を用いて、測定範囲を設定する。

b) 専用探傷器
専用探傷器の場合には、ゲートの設定を探傷する鉄筋の呼び名に合わせる。

7.2 基準レベルの設定
基準レベルは、探傷する鉄筋の製造業者、種類及び呼び名が異なるごとに以下のように設定する。
a) はん用探傷器
はん用探傷器の場合には、透過走査によって透過パルスの最大値を求める(図2参照)。この透過パルスの高さを表示器目盛の50%となるように探傷器のゲイン調整器を講整し、これを基準レベルとする。


図2 – 基準レベルを得るための透過走査

b) 専用探傷器
専用探傷器の場合には、透過走査によって透過パルスの最大値を求める(図2参照)。探傷器の警報ランプ、バー表示又は音で最も高い透過パルスであることを確認し、これを基準レベルとする。

7.3 合否判定レベルの設定
合否判定レベルは、基準レベルの -24dBとする。

8 探傷試験
8.1 探傷方法
探傷は、鉄筋のリブ上での斜角二探触子によって、圧接部のふくらみの両側で行う(図3参照)。


図3 – 斜角二探触子法

8.2 走査方法及び走査範囲

走査方法及び走査範囲は、次による(図4参照)。

a)最初に、一方の探触子を圧接部のふくらみに近接した位置①に置き、他方を圧接部のふくらみに近接した位置④と圧接面から約2Dの位置⑤の範囲で前後走査する。

b) 次に、一方の探触子を圧接面から約1.4Dの位置②に置き、他方を圧接部のふくらみに近接した位置④と圧接面から約2Dの位置⑤の範囲で前後走査する。

c) 最後に、一方の探触子を圧接面から約2Dの位置③に置き、他方を圧接部のふくらみに近接した位置④と圧接面から約2Dの位置⑤の範囲で前後走査する。


図4 – 走査方法

8.3 走査速度
走査速度は、60mm/s以下とする。

9 合否判定
圧接部を挟んで両側における探傷試験で、合否判定基準レベル以上のエコーが検出されなかった場合は合格とする。

10 記録
探傷試験を行った後、次の事項を記録する。

a) 工事名
b) 圧接工事施工者名(会社名)
c) 圧接工法
d) 試験年月日
e) 試験を実施した試験技術者の氏名
f) 試験箇所
g) 合否判定結果
h) 鉄筋の製造業者名、種類及び呼び名
i) 探傷器の形式及び製造番号
j) 探触子の製造業者名及び製造番号
k) その他参考となる事項(指定事項、協議事項、試験材の抜取方法など)

JIS Z 3062 : 2009

(iii) 探傷不能領域の存在

超音波探傷試験では、鉄筋のリブ上の探触子から入射させる超音波で圧接面のできるだけ広い範囲が探傷できるように、探触子をリブ上で前後に移動させて走査を行うが、それでも圧接面には探傷不能領域と呼ばれる超音波が届かない部分が存在する。この探傷不能領域は図5.4.9に示すように圧接面の周辺部となるため、この部分に存在する欠陥は検出できないことになる。しかし、この探傷不能領域の存在を前提としたうえで、図5.4.8の関係が成り立っている。


図5.4.9 探傷不能領域

(iv) 試験従事者
試験従事者は当該工事のガス圧接工事に関連のない立場の者とし、監督職員は、受注者等から提出された知識及び経験等の証明となる資料により確認することになるが、圧接作業、圧接条件等についても必要な知識を有する者であることが要件となる。

一例として、(公社)日本鉄筋継手協会では「鉄筋継手部検査技術者技量資格」(1G種,1W種,1M種,2種,3種)の認証を行っている。1G種,1W種,1M種は、それぞれ、圧接継手部、溶接継手部、機械式継手部の、2種は圧接継手部と溶接継手部の、3種は圧接継手部と溶接継手部、機械式継手部の超音波探傷検査及び外観検査を行うことができる資格である。したがって、ガス圧接継手の検査を行うことができる検査技術者は、1G種,2種,3種のいずれかの技量資格を有する者である。

これらの者は、「標仕」5.4.9(2)(ⅰ)④に規定する試験従事者としての要件のうち、必要な知識等を有するものと見なすことができる。

(v) ロットの合否判定
ロットの合否判定は、抜き取った試験箇所数のすべてが合格と判定された場合に当該ロットを合格とすることとしている。この「標仕」の抜取り方式(ロットの大きさ:200程度、抜取り数:30箇所、不合格品個数:0)では、品質のレベルを表すAOQL( Average Outgoing Quality Limit:平均出検品質限界)は約1%となる。

(4) 引張試験による抜取試験
(i) 引張試験の試験箇所数
引張試験による抜取試験の場合、超音波探傷試験による抜取試験の場合と同じく1検査ロットの大きさは、1作業班が1日に施工した箇所数としている。

また、試験片の採取数は1ロットに対して3本としている。作業班ごとの外観試験に合格したもののうち最とも外観の悪いものについて行い、その採取箇所は監督職員が指定することが望ましい。

試験片を採取した箇所は、同種の鉄筋を再圧接により継ぎ足して修正する。ただし、鉄筋がD25以下の場合にはコンクリート打込み等に問題がなければ鉄筋の納まりを考慮し、設計担当者と協議したうえで重ね継手として修正させてもよい。

(ii) 試験片の形状、寸法及び試験方法は、JIS Z 3120(鉄筋コンクリート用棒鋼ガス圧接継手の試験方法及び判定基準)による。この規格の抜粋を次に示す。

JIS Z 3120 : 2009

1 適用範囲
この規格は、構造物の鉄筋としてJIS G 3112に規定する棒鋼を用いる場合の手動ガス圧接法、自動ガス圧接法及び熱間押抜きガス圧接法によるガス圧接継手の試験方法及び判定基準について規定する。

3 用語及び定義
この規格で用いる主な用語及び定義は、JIS Z 3001-1及びJIS Z 3001-2によるほか、次による。

3.1 ガス圧接継手
酸素 – アセチレンガス炎を用いて加熱し、機械的圧力を加えて溶接した突合せ継手。

3.2 手動ガス圧接法
加圧工程とバーナー躯動とを自動的に制御しない手動ガス圧接装置を使用してガス圧接を行う方法。

3.3 自動ガス圧接法
加圧工程とパーナー駆動とを自動的に制御する自動ガス圧接装置を使用してガス圧接を行う方法。

3.4 熱間押抜きガス圧接法(略)

3.5 圧接面
圧接によって得られた接合面。

3.6 圧接部
圧接によって得られた熱影響部を含む継手部全体。

3.7 追試験
試験片の不合格の原因を確認するための試験。

4 試験の種類
試験の種類は、外観試験と引張試験とする。ただし、やむを得ない場合は、継手施工の受渡当事者間の合意によって、引張試験を曲げ試験に代えてもよい。

5 試験片
試験片の形状及び寸法は、表1による。試験片はガス圧接のままとし、引張試験片又は曲げ試験片は外観試験に合格したものを用いる。ただし、手動ガス圧接法又は自動ガス圧接法によって作製した曲げ試験片については、試験片を正しく曲げるために、押し金具が当たる側のふくらみを母材外接線まで削るのが望ましい。

表1 – ガス圧接継手試験片の形状及び寸法

6 試験方法

6.1 外観試験
圧接部の外観試験は、ふくらみの形状・寸法、圧接接面のずれ、鉄筋中心軸の偏心量、折れ曲がり、その他有害と認められる欠陥の有無などについて、目視又は必要に応じてノギス、スケールなどの器具を用いて行う。

6.2 引張試験方法
引張試験方法は、JIS Z 2241による。ただし、継手の引張強さを求める場合の断面積は、異形棒鋼については JIS G 3112に規定する公称断面積とし、棒鋼についてはJIS G 3191に示す標準径によって求めた断面積とする。

6.3 曲げ試験方法
曲げ試験方法は、JIS Z 2248に規定する押曲げ法による。ただし、 曲げ角度は45° 以上とし、内側半径は JIS G 3112による。

7 判定基準
7.1 外観試験の判定基準
すべての試験片が次の判定基準を満足しなければならない。

a) 手動ガス圧接法及び自動ガス圧接法によって作製された試験片の場合は、次による。

1) 圧接部のふくらみの直径(D)は、鉄筋の径又は公称直径の1.4倍以上とする。ただし、JISG3112に規定するSD490の場合は1.5倍以上とする(図1参照)。

2) 圧接部のふくらみの長さ(ℓ)は、鉄筋の径又は公称直径の1.1倍以上とする。ただし、JISG3112に規定するSD490の場合は1.2倍以上とする(図1参照)。


図1 – 圧接部のふくらみの直径及びふくらみの長さ

3) 圧接面のずれ( δ) は、鉄筋の径又は公称直径の1/4以下とする(図2参照)。


図2 – 圧接面のずれ

4) 圧接部における相互の鉄筋中心軸の偏心量 ( e ) は、鉄筋の径又は公称直径の1/5以下とする(図3参照)。


図3 – 偏心量

5) 目視によって明らかな圧接部の折れ曲がりがないものとする。

6) 目視によって圧接部に過熱による著しいたれ・割れ・溶けがないものとする。

b)(略)

7.2 引張試験の判定基準
すべての試験片の引張強さがJIS G 3112の規定に合格しなければならない。

7.3 曲げ試験の判定基準
いずれの試験片も圧接面に破断又は割れがあってはならない。

JIS Z 3120 : 2009

(iii) ロットの合否判定
ロットの合否判定は、抜き取った試験片の全数が母材のJIS規格引張強さ以上で、かつ、圧接面での破断がない場合を当該ロットの合格としている。母材のJIS規格引張強さ以上でも、圧接面で破断した場合に不合格としているのは、圧接面破断が生じる際の強度には、ばらつきが大きい場合もあり、3本の抜取試験では強度の推定が困難なためである。

母材のJIS規格引張強さ未満で圧接面破断した場合は、原因が母材鉄筋自身にあることも考えられるので、鉄筋母材の材料試験をしてみることが望ましい。

また、母材破断した場合でも、母材の規格引張強さ未満で破断した場合は不合格となる。その場合で、破断部位が圧接器の締付けボルトによる圧痕に起因していると考えられる場合には、締付けボルトを変更する必要がある。

圧接面で破断し不合格となった場合には、再試験を行うことができることとし、その場合の抜取り数は当該ロットの5%以上とし、すべての試験片について引張強さが母材のJIS規格値以上の場合を合格としている。

5.4.10 不合格となった圧接部の修正

不良圧接部の判定手順及び修正について、図5.4.10に示す。
(1) 外観試験で不合格となった圧接部の修正
(i) 圧接部のふくらみの直径とふくらみの長さがそれぞれ鉄筋径の1.4倍、1.1倍に満たない場合の修正は、鉄筋を切断せずに再加熱・加圧して、所定のふくらみの直径及びふくらみの長さとしてもよい。これは再加熱・加圧によって圧接部の品質を劣化させることなく形状を修正することができるためである。

(ii) 圧接面のずれが鉄筋径の1/4を超えた場合は、十分な接合強度が得られず圧接面破断となりやすい。この場合には、圧接部を切り取って再圧接する。

(iii) 圧接部における鉄筋中心軸の偏心量が鉄筋径の1/5を超えた場合には、圧接面に必要な加圧力が作用しなかった可能性があるので圧接部を切り取って再圧接する。

(iv) 圧接部に折れ曲りが生じている場合は、これによる強度低下は少ないが、鉄筋の軸方向の剛性が低下するので再加熱によって修正する。

(v) 圧接部のふくらみ量の差が鉄筋径の1/5を超える片ふくらみとなった場合は、部分的に十分な加圧力が作用しなかった可能性があるので圧接部を切り取って再圧接する。

(vi) 圧接部のふくらみがつば形となるのは、バーナーの揺動幅が狭く、幅焼き不足によって生じるもので、箸しいつば形の場合には圧接面の中心部まで適正な圧接温度に達していない可能性がある。

また、短時間の加熱で加圧すると圧接部表面にひび割れが生じやすい。著しいひび割れは鉄筋内部が適正温度に達していない可能性がある。

いずれの場合にも、圧接部を切り取って再圧接する。

(2) 抜取試験で不合格となったロットの処置
(i) 超音波探傷試験あるいは引張試験による抜取試験で不合格ロットが生じた場合には、直ちに圧接作業を中止し、欠陥の発生箇所、圧接面に発生している欠陥の種類等を調べて欠陥の発生原因を究明する。原因が明らかになれば、再発防止のための改善措置を検討し、施工計画書の修正等を行ったのち、作業を行う。

(ii) 不合格となったロットは、試験されていない残り全数に対して超音波探傷試験を行い、不良圧接部の選別を行う。

(iii) 超音波探傷試験の結果、不合格となった圧接箇所の処理は、圧接箇所を切り取って再圧接する。平成19年版「標仕」では不合格となった圧接箇所について、監督職員と協議したうえでの添え筋による補強を認めていた。しかし、添え筋 による補強は重ね継手によることと同じことであり、鉄筋径の制限があるとともに、鉄筋のあきを確保することや付着性能の確認が必要となる。こうした事項の確認は設計担当者が行うべきもので、現場で安易に採用すべきではないとの観点から、平成22年版「標仕」で添え筋による補強が削除された。ただし、圧接位置によっては再圧接が困難で、機械式継手等によって処理することが必要な場合もあり得るので、設計担当者により処理方法が特記されていることが望ましい。

(3) 圧接部を再加熱して修正する場合は、適正な形状となったかどうか外観試験を行って確認する必要がある。また、圧接部を切り取って再圧接する場合は、外観試験及び超音波探傷試験を行って再圧接した圧接部の品質を確認する必要がある。


図5.4.10 不良圧接部の判定手順及び修正

5.4.11 「標仕」以外の圧接工法

圧接作業方法として、「標仕」に規定する方法以外に熱間押抜きガス圧接がある。この方法は、圧接直後に圧接部のふくらみを赤熱中にせん断刃で押し抜いて除去し、このせん断面の表面外観により圧接部の品質を判定できるとともに、仕上り形状を母材鉄筋に近づけることができる。

なお、熱間押抜きガス圧接はふくらみを除去する工法であるため、平成12年建設省告示第1463号で規定する構造方法に適合しない部分がある。このため(公社)日本鉄筋継手協会が、同協会の「鉄筋のガス圧接工事標準仕様書(2003年)」に基づき適切に施工された熱間押抜きガス圧接部材について実験により性能の確認を行った結果が「鉄筋のガス圧接継手性能評価に関する調査研究(2004年)」にまとめられているので参考にするとよい。

(1) 熱間押抜きガス圧接の特徴等
(i) 加熱・加圧等の圧接工程は、従来の方法と全く同じであり、せん断除去後のふくらみ部の径は、鉄筋径よりやや大きい寸法(鉄筋径の1.2倍程度)となる。

(ii) 不良圧接の場合、熱間押抜きに伴って圧接部に生じる鉄筋軸方向の引張応力によって接合面が開口し、割れや線状傷として現れることにより品質を判定できる(図5.4.11参照)。


図5.4.11_押抜き法による表面傷の発生過程

(iii) ふくらみの押抜き直後に、圧接部表面に割れ、線状傷、へこみ等の欠陥が認められた場合には、再圧接のうえ再度押し抜くことができる。

(iv) 径の異なる鉄筋間の継手には適用できない。

(v) 押抜き作業には特別な技量を必要とするため、熱間押抜きガス圧接技量資格証明書を有する圧接技量資格者とする必要がある。

(2) 押抜き後の試験
押抜き後の試験は、全数外観試験を行う。

外観試験は、目視によって行い、必要に応じてノギス、スケール、鏡、その他適切な器具を用いる。また、外観試験の対象項目及び判定基準は、次のとおりである。

① ふくらみを押し抜いたのちの圧接面に対応する位置に割れ、線状傷、へこみがあってはならない。

② オーバーヒート等による表面不整があってはならない。

③ 圧接部のふくらみの長さℓは、鉄筋径の1.1倍以上でなければならない(図5.4.12 参照)。


図5.4.12 圧接部のふくらみの長さ

④ 圧接部における鉄筋中心軸の偏心量 e は、鉄筋径の1/10以下でなければならない。(図5.4.13参照)


図5.4.13 偏心量

⑤ 目視により明らかな折れ曲りがあってはならない。

(3) 押抜き後の試験で不合格となった場合の処置
押抜き後の外観試験で不合格となった圧接部は,次に示す方法で処置する。

① 押抜き後の圧接面に対応する位置に割れ,線状傷,へこみ,オーバーヒート等による表面不整が認められた場合及びふくらみの長さが鉄筋径の1.1倍に満たない場合は、そのまま再加熱、再加圧、押抜きを行って修正し、外観検査を行う。

② 圧接部に著しい折れ曲がりを生じた場合は、再加熱して修正し、外観検査を行う。

③ 圧接部における鉄筋中心軸の偏心量が規定値を超えた場合は、圧接部を切り取って再圧接し、外観検査を行う。

5章 鉄筋工事 5節 機械式継手及び溶接継手

第5章 鉄筋工事 


5節 機械式継手及び溶接継手

5.5.1 適用範囲

(a) 現在、わが国で使用されている鉄筋継手を工法別に分類すると図5.5.1に示すとおりとなる。平成22年版「標仕」では、このうちの重ね継手とガス圧接継手を標準的な鉄筋継手工法として取り扱い、機械式継手とD16以下の細径鉄筋に用いる重ねアーク溶接継手(フレア溶接継手)を特殊な鉄筋継手として、その適用範囲を限定してきた。平成25年版「標仕」では、「鉄筋の継手の構造方法を定める件」(平成12年5月31日建設省告示第1463号)に適合する機械式継手及び溶接継手についても標準的な鉄筋継手工法として取り扱うように改定された。

したがって、これまでの特殊な鉄筋継手の適用範囲であった機械式継手とD16以下の細径鉄筋に用いる重ねアーク溶接継手については従来と同様に適用範囲に含まれており、新たに突合せ溶接継手(エンクローズ溶接継手)が適用範囲に含まれたことになる。

なお、図5.5.1の溶接継手のうち、フラッシュバット溶接継手及びアプセットバッ卜溶接継手からなる突合せ電気抵抗溶接継手は、溶接閉鎖型のせん断補強筋や開口部補強筋に用いられる。これらのうち、高強度せん断補強筋の接合に用いる溶接は、5.3.2(d)(2)に記述したように、それぞれの製品の設計施工指針が対象とする製造工場又は加工工場のみで行われる。これは、評定を受けて製造される開口部補強筋製品についても同様である。一方、普通強度のせん断補強筋に用いる溶接については、(公社)日本鉄筋継手協会が審査により高品質な溶接閉鎖型せん断補強筋を製造する会社(工場)を「優良溶接せん断補強筋製造会社」として認定しているので、参考にするとよい。


図5.5.1 鉄筋継手の分類

(b) 機械式継手や溶接継手を用いる場合は設計図書に記載されるが、工事に当たっては適用の条件を確認する必要がある。設計図書に記載される事項は次のようなものである。

(1) 継手の名称
(2) 必要に応じて、接合装置名、接合用部品の材料の材質・形状・寸法等、鉄筋端あるいは表面の処理法
(3) 必要に応じて、継手位置、継手部におけるコンクリートのかぶり厚さ、継手部におけるあばら筋・帯筋の寸法・間隔、継手の位置のずらし方等
(4) 現場における継手の試験・検査の方法とその回数

(c) 継手によっては、接合装置がかさばる場合もあるので、接合する部分の鉄筋間隔についての事前の検討が必要である。

5.5.2 機械式継手

(a) 機械式継手は、「鉄筋の継手の構造方法を定める件」(平成12年5月31日建設省告示1463号)に適合したものでなければならない。同告示では、機械式継手の構造方法として、カップラー等の接合部分における滑りやカップラーの強度、モルタルやグラウト材等の強度、ナットを用いて固定する場合の導入トルク、圧着によって固定する場合の密着状態を規定している。現在までに建築工事に適用実績のある機械式継手を次に例示する。

(1) ねじ節継手は、異形鉄筋の節形状がねじ状になるように圧延された鉄筋を雌ねじ加工されたカップラーを用いて接合する工法である。メーカーによって節形状が異なっており専用のカップラーが必要である。カップラーと鉄筋との間の緩みを解消する方法として、ロックナットを締め付けるトルク方式、カップラーと鉄筋の節との空隙にモルタル又は樹脂を注入するグラウト方式、両者を併用したナットグラウト方式がある(図5.5.2参照)。


(イ)トルク方式


(ロ)グラウト方式
図5.5.2 ねじ節継手の例

(2) 端部ねじ継手は、市販の異形鉄筋の端部をねじ加工した鉄筋、又は加工したねじ部を鉄筋の端部に摩擦圧接した鉄筋を使用し、雌ねじ加工したカップラーを用いて接合する工法である(図5.5.3参照)。


図5.5.3 端部ねじ継手の例

(3) 鋼管圧着継手は突き合わせた鉄筋の端部に鋼管(スリーブ)をかぶせたのちにこの鋼管を油圧ジャッキで圧着し、鋼管を異形鉄筋の節に食い込ませて接合する工法である。鋼管の圧着を連統的に行う方式と断続的に行う方式がある。鉄筋は異形鉄筋であれば市販のどれでも使用できる(図5.5.4参照)。


(イ) 連続圧着方式


(ロ)断続圧着方式
図5.5.4 鋼管圧着継手の例

(4) 充填継手には、充填する材料によってモルタル充填継手と、溶融金属充填継手の2種類がある。モルタル充填継手は鋳鋼製スリーブの両端から鉄筋を突き合わせるように挿入し、スリーブと鉄筋との隙間を無収縮高強度モルタルで充填し一体化して接合する工法である。溶融金属充槙継手は鉄筋を突き合わせたスリーブ内に溶融金属を流し込んで隙間を充填し接合する工法である。いずれも市販の異形鉄筋はどれでも使用できる(図5.5.5参照)。


図5.5.5 充填継手の例

(5) 併用継手は、2種類の機械式継手を組み合わせることでそれぞれの長所を取り入れ、施工性を改良したものである(図5.5.6参照)。


(イ)圧着ねじ併用継手


(ロ)充填圧着併用継手
図5.5.6 併用継手の例

(6) 「鉄筋の継手の構造方法を定める件」における機械式継手に関する規定の抜粋を次に示す。

鉄筋の継手の構造方法を定める件
(平成12年5月31日建設省告示第1463号)

建築基準法施行令(昭和25年政令第338号)第73条第2項ただし書(第79条の4において準用する場合を含む。)の規定に基づき、鉄筋の継手の構造方法を次のように定める。

1.(5.4.3 (a)に記載)

2.(5.4.3 (a)に記載)

3.(5.5.3 (a)に記載)

4.機械式継手にあっては、次に定めるところによらなければならない。

ー カップラー等の接合部分は、構造耐力上支障のある滑りを生じないように固定したものとし、継手を設ける主筋等の降伏点に基づき求めた耐力以上の耐力を有するものとすること。ただし、引張力の最も小さな位置に設けられない場合にあっては、当該耐力の1.35倍以上の耐力又は主筋等の引張強さに基づき求めた耐力以上の耐 力を有するものとしなければならない。

ニ モルタル、グラウト材その他これに類するものを用いて接合部分を固定する場合にあっては、当該材料の強度を1平方ミリメートルにつき50ニュートン以上とすること。

三 ナットを用いたトルクの導入によって接合部分を固定する場合にあっては、次の式によって計算した数値以上のトルクの数値とすること。この場合において、単位面積当たりの導入軸力は、1平方ミリメートルにつき30ニュートンを下回ってはならない。

四 圧着によって接合部分を固定する場合にあっては、カップラー等の接合部分を鉄筋に密着させるものとすること。

(b) 隣り合う鉄筋の継手位置は、「標仕」5.3.4(d)により、カップラーの中心間で400 mm以上かつ、カップラー端部の間のあきが40mm以上となるようにずらして配置する。ただし、先組み工法等で継手を相互にずらさない場合は特記による位置とする。

(c) 現在、市販されている機械式継手は、(一財)日本建築センターの評定を受けて告示の構造方法との適合性が確認されている。したがって、工法や品質の確認方法等は、各工法の評定を受けた施工要領書に準拠しなければならず、特記及び品質計画はこれらの施工要領書に基づいて定める必要がある。

機械式継手の検査においては、カップラーに対する鉄筋の挿入長さの確認が重要である。機械式継手は、鉄筋の挿入長さが十分でなければカップラーを介して応力が伝達されず十分な機能を果たさなくなる。このため、施工作業ではマーキングによる挿入長さの確認を行うこととしており、監督職員も抜取り的に確認を行うのがよい。(公社)日本鉄筋継手協会「鉄筋継手工事標準仕様書機械式継手工事(2009年)」では、表面SH波法による鉄筋挿入長さの超音波測定検査を主要な機械式継手の仕様とともに定めているので、必要に応じて参考にするとよい。

5.5.3 溶接継手

(a) 溶接継手は、「鉄筋の継手の構造方法を定める件」(平成12年5月31日建設省告示第1463号)に適合したものでなければならない。同告示では、突合せ溶接継手の構造方法が規定され、径が25mm以下の主筋等にあっては重ねアーク溶接継手とすることができるただし書きが記されている。

「鉄筋の継手の構造方法を定める件」の溶接継手に関する規定の抜粋を次に示す。

鉄筋の継手の構造方法を定める件
(平成12年5月31日建設省告示第1463号)

建築基準法施行令(昭和25年政令第338号)第73条第2項ただし書(第79条の4において準用する場合を含む。)の規定に基づき、鉄筋の継手の構造方法を次のように定める。

1 (5.4.3(a)に記載)

2 (5.4.3(a)に記載)

3 溶接継手にあっては、次に定めるところによらなければならない。

ー 溶接継手は突合せ溶接とし、裏当て材として鋼材又は鋼管等を用いた溶接とすること。ただし、径が25ミリメートル以下の主筋等の場合にあっては、重ねアーク溶接継手とすることができる。

二 溶接継手の溶接部は、割れ、内部欠陥等の構造耐力上支障のある欠陥がないものとすること。

三 主筋等を溶接する場合にあっては、溶接される棒鋼の降伏点及び引張強さの性能以上の性能を有する溶接材料を使用すること。

4 (5.5.2(a)に記載)

(b) 隣り合う鉄筋の継手位置は、「標仕」5.3.4(d)により、継手の中心間で400以上ずらして配置する。ただし、先組み工法等で継手を相互にずらさない場合は特記による位置とする。

(c) 現在、工事に採用できる突合せアーク溶接継手(エンクローズ溶接継手)は、告示の第1項ただし書きの規定による継手部分の性能を確認し、(一財)日本建築センターの評定又は(公社)日本鉄筋継手協会の認定を受けたものがほとんどである。これらは告示の第3項にも適合しているので、性能が確認されたこれらのエンクローズ溶接継手を用いるのが望ましい。(一財)日本建築センターの評定又は(公社)日本鉄筋継手協会の認定を受けたエンクローズ溶接継手の工法や品質の確認方法等は、前者では評定を受けた施工要領書に、後者では(公社)日本鉄筋継手協会「鉄筋継手工事標準仕様書 溶接継手工事(2009年)」に準拠しなければならず、特記及び品質計画はこれらに基づいて定める必要がある。

(1) エンクローズ溶接継手の概要と種類
エンクローズ溶接継手は突き合わせた鉄筋の開先部を裏当て金で囲み、CO2ガスシールドにより溶接部の酸化を防止しながら、開先底部よりアークをスタートさせて鉄筋両端面に十分な溶込みを与えながら連続的に開先内を溶融金属で充填して接合するもので、溶接後の継手の伸縮は小さいという特徴がある。この溶接はI 形開先であり、ルート間隔の管理が重要である。エンクローズ溶接の例を図 5.5.7に示す。


図5.5.7 エンクローズ溶接の例

(2) エンクローズ溶接継手の検査
(一財)日本建築センターの評定又は(公社)日本鉄筋継手協会の認定を受けたエンクローズ溶接継手の検査は、その工法の施工要領書に定める方法によらなければならない。検査の種類では、「鉄筋の継手の構造方法を定める件」の第3項第二号において、溶接部に割れ、内部欠陥等の構造耐力上支障のある欠陥がないものとすることと規定されていることに対応して、外観検査と超音波探傷検査が行われる。しかし、裏当て金が固着する工法では溶接部全周の外観検査ができないことや裏当て金によって超音波探触子を当てる部分が制限される。また、裏当て材が取り外せる工法でも鉄筋のリブとアークの起点が必ずしも一致しないため、ガス圧接継手の超音波探傷検査に採用される直角K走査法では欠陥が比較的生じ易いとされる溶接初層部の検査ができない場合がある。したがって、エンクローズ溶接継手については、工事の全部あるいは一部について、より広範囲な検査領域が得られる探触子走査法を併用することなどが望ましい。

(公社)日本鉄筋継手協会「鉄筋継手工事標準仕様書 溶接継手工事(2009年)」では、上記の課題に対応する検査方法として、探触子を鉄筋軸に対して20゜傾斜させる斜めK走査法や斜めタンデム走査法を直角K走査法と併用する検査法が規定されているので、参考にするとよい。例として斜めK走査法による鉄筋溶接部の超音波探傷を図5.5.8に示す。


図5.5.8 斜めK走査法による鉄筋溶接部の超音波探傷

(公社)日本鉄筋継手協会「鉄筋継手工事標準仕様書 溶接継手工事(2009年)」における検査の規定の抜粋を次に示す。

鉄筋継手工事標準仕様書 溶接継手工事(2009年)

4章 検 査
4.1 一般事項
(1) 溶接部の検査は、外観検査と超音波探傷検査によって行う。引張試験による検査を併用する場合は、特記による。

(2) 検査は、原則として発注者又は監理・責任技術者の立会のもとに行う。

(3) 検査の時期は、工事工程を考慮して定め、監理・責任技術者の承認を得る。

(4) 検査数量は、次による。
a. 外観検査は、全数検査とする。
b. 超音波探傷検査は、抜取検査とする。
c. 引張試験による検査は、抜取検査とする。

(5) 検査は、発注者又は監理・責任技術者の承認を受けた施工者若しくはその代理者である検査会社の検査技術者が行う。また、検査技術者は、欽筋継手部検査技術者資格の1W種、2種又は3種を保有する者とする。

4.2 外観検査
(1) 外観検査の検査項目は、表2による。

(2) 外観検査は、目視によって行い、目視で判定が困難なものに対して、ノギス、スケール、その他適切な器具を用いて寸法を測定する。

(3) 外観検査の合否判定基準は、各溶接継手工法の認定条件及び表2のいずれをも満足するものとする。

表2 外観検査項目及び合否判定基準

4.3 超音波探傷検査
(1) 超音波探傷検査の検査項目は、内部欠陥の検出とする。

(2) 超音波探傷検査の方法は、(社)日本鉄筋継手協会規格 JRJS 0005(鉄筋コンクリート用異形棒鋼溶接部の超音波探傷試験方法及び判定基準(案))に規定する直角K走査法と斜めK走査法(又は斜めタンデム走査法)を併用して行う。

(3) 継手の合否判定基準は、合否判定レベルを基準レベルの –18dBとし、これ以上のエコーが検出された場合は、不合格とする。

4.4 超音波探傷検査における抜取検査
(1)抜取検査の検査ロットは、同ー作業班が同一日に施工した溶接箇所とし、その大きさは、200箇所程度を標準とする。

(2) サンプルの大きさは検査ロットごとに30箇所とし、サンプルはランダムに抽出する。

(3) ロットの合否判定は、30箇所のサンプルのうち、不合格数が、1箇所以下のときはロットを合格とし、2箇所以上のときはロットを不合格とする。

(4) ロットの処置については、合格ロットはそのまま受け人れ、不合格ロットは超音波探傷検査による全数検査を行って合格した溶接粧手を受け入れる。

4.5 引張試験による検査
(1) 溶接継手の引張試験方法は、JIS Z 2241(金属材料引張試験方法)による。ただし、継手の引張強さを求める場合の断面積は、JIS G 3112(鉄筋コンクリート用棒鋼)に規定する公称断面積とする。なお、この場合の引張試験機による試験片のつかみ間隔は、公称直径の8倍以上とする。

(2) 溶接継手の引張試験の合否判定基準は、試験片の引張強さが母材の規格値以上の場合、合格とする。

(3) 引張試験による検査における抜取検査は、次による。
a. 抜取検査の検査ロットは、同ー作業班が同一日に施工した溶接箇所とし、その大きさは200箇所程度を標準とする。

b. サンプルの大きさは検査ロットごとに3本とし、サンプルはランダムに抜き取る。

c. すべての試験片の引張強さが母材の規格値以上のときはロットを合格と判定する。また、1本のみが母材の規格値未満のときは、さらに3本を抜き取り、すべての追加試験片の引張強さが母材の規格値以上のときはロットを合格と判定する。

d. 合格ロットはそのまま受け人れ、不合格ロットの処置は、監理・責任技術者 と協議し、承認を得る。

4.6 不合格溶接部等の処置
(1) 検査で不合格が生じた場合は、直ちに監理・責任技術者に報告し、処置について承認を得る。監理・責任技術者が処置方法を指定する場合以外においては、次の(2), (3)により処置を行う。

(2) 外観検査で不合格となった溶接部は、不合格溶接部を補修又は再溶接した後、外観検査及び超音波探傷検査を行う。

(3) 超音波探傷検査で不合格となった溶接部は不合格溶接部を切り取って再溶接し、外観検査及び超音波探傷検査を行う。

(4) 外観検査で10%以上の溶接部に不合格が生じた場合又は超音波探傷検査でロット不合格と判定された場合は、以後の溶接継手工事を中止し、不合格の発生原因を調査する。工事を再開するにあたっては、再発防止のために必要な措置を講じて、監理・責任技術者の承認を得る。

鉄筋継手工事標準仕様書 溶接継手工事(2009年)

(d) D16以下の細径鉄筋に対する溶接は、重ねアーク溶接(フレア溶接)とする。これについて、「鉄筋の継手の構造方法を定める件」(平成12年5月31日 建設省作示第1463号)では、径が25mm以下の主筋等の場合にあっては重ねアーク溶接継手とすることができるとあるので、「標仕」の方が厳しく制限していることに注意する必要がある。フレア溶接継手は鉄筋どうし又は鉄筋と鋼材を重ね合わせて、その重ねた部分にできる開先部分を溶接する方法である(図5.5.9参照)。主としてせん断補強筋の接合に用いられ、高強度の鉄筋での実績はほとんどない。(社)プレハプ建築協会では壁式プレキャスト工法のパネル間接合にフレア溶接を用いることから、「PC工法溶接工事品質管理規準(2004年)」を定めて運用している。同基準における鉄筋の種類の適用範岡は、JIS G 3112(鉄筋コンクリート用棒鋼)の規格品のうち、SR235,SD295A, SD295B,SD345としている。


(イ)当て金なし


(ロ)当て金付き
図5.5.9 フレア溶接継手の例

SD345以下の強度の鉄筋をフレア溶接継手によって全強継手とするための溶接有効長さは、(社)プレハプ建築協会「PC工法溶接工事品質管理規準(2004年)」の規定と同様に、片面溶接で鉄筋径の10倍以上、両面溶接で鉄筋径の5倍以上を確保する。また、同規準では、片面溶接はD13以下の細径鉄筋に制限している。

更に同規準において、フレア溶接継手の開先標準が表5.5.1のとおり定められているので、参考にするとよい。

表5.5.1 フレア溶接継手の開先標準

(e) 溶接技能者は、工事に相応した技量を有する者でなければならず、各鉄筋継手工法に定められた資格者でなければならない。

エンクローズ溶接継手については、評定又は認定を受けた施工要領書で規定する資格を有する者でなければならない。一例として、(公社)日本鉄筋継手協会では、「鉄筋溶接技量検定規定」に基づいて検定試験を行い、鉄筋溶接技量資格者を認証し、適格性証明書を発行している。すべてのエンクローズ溶接工法でこの資格者であることが規定されているものではないが、技量検定試験により一定の技量が確認されている技能者であるとしてよい。

フレア溶接継手については、7.6.3[技能資格者]の中板構造の資格者とするのが一般的であるが、これらの評価試験が板材や管材の突合せ溶接によっていることに鑑み、(社)プレハプ建築協会ではフレア溶接に関する付加技量試験を行って、手溶接に対するアーク溶接技能者(PC-M)及び半自動溶接に対する半自動溶接技能者(PC-S)を認定しているので、参考にするとよい。

参考文献

6章 コンクリート工事 1節 一般事項

第6章 コンクリート工事
01節 一般事項
6.1.1 適用範囲
(a)この章は、工事現場施工のコンクリート工事に適用する。

また、平成25年版「標仕」では、コンクリート工事の品質管理の向上等を目的に、主に次の変更が行われた。
(1) 設計基準強度をコンクリートの要求品質の一つに位置付け、これを満足するための管理項目として、使用するコンクリートの強度と構造体コンクリートの強度を明示した。
(2) 材料及び調合の条件を、コンクリートの品質項目や製造から外し、「コンクリートの材料及び調合」として独立させ、調合管理強度を満たすための条件として設計基準強度や構造体強度補正値との関係を含め、セメントや骨材等のコンクリート用材料ごとの事項を一つにまとめた。
(3) 普通コンクリートの一部として扱っていた「暑中におけるコンクリートの取扱い」は新たに「暑中コンクリート」として節立てし、普通コンクリートの一般規定から独立させた。また、設計基準強度27N/mm2以上、かつ、36N/mm2以下のコンクリートは、普通コンクリートの一般規定とは別に扱っていたが、普通コンクリートと同じ扱いとし「高い強度のコンクリートの取扱い」を削除した。
(4)構造体コンクリートの仕上り状態及びかぶり厚さの確認並びにそれらの事項が所要の品質を満足しない場合の補修及びその後の検査を明記した。
(b) 作業の流れを図6.1.1に示す。
(c)施工計画書の記載事項は、おおむね次のとおりである。
なお赤文字を考慮しながら品質計画を検討する。
(1)コンクリート工事の施工計画書
工程表(配合計画書の提出、試し線り、柱取外し等の時期)
配合計画書、計画調合の計算書(軽量コンクリートの気乾単位容積質量(「標仕」6.10.2(d))を含む)
コンクリートの仕上りに関する管理基準値、監理方法等
④ 仮設計画(排水、コンクリートの搬入路等)
打込み量、打込み区画、打込み順序及び打止め方法
⑥ 打込み作業員の配置、作業動線
⑦ コンクリートポンプ車の圧送能力、運搬可能距離の検討
⑧ コンクリートポンプ車の設置場所、輸送管の配置及び支持方法
⑨ コンクリート運搬車の配車
圧送が中断したときの処置
圧送後、著しい異状を生じたコンクリートの処置
打継ぎ面の処置方法
⑬ 上面の仕上げの方法(タンピング)
打込み後の養生(暑中、寒中)
コンクリートの補修方法
供試体の採取(採取場所、養生方法)
⑰ 試験所
(2) 型枠工事の施工計計画
① 型枠の準備量
型枠の材料
型枠緊張材の種別及び緊張材にコーンを使用する箇所
④ コンクリート寸法図(スケルトン、コンクリート躯体図、コンクリートプラン)
⑤ 基準部分の型枠組立図
型枠材取外しの条件(材齢又は構造計算により安全を確認する場合)
⑦ はく離剤使用の有無
図6.1.1コンクリート工事の作業の流れ.jpg
図6.1.1 コンクリート工事の作業の流れ
6.1.2 基本要求品質
(a) コンクリートの「材料」に関しては、JIS A 5308(レディーミクストコンクリート)に適合した材料が使用されており、JIS Q 1011(適合性評価:日本工業規格への適合性の認証ー分野別認証指針(レディーミクストコンクリート))では、製造工場から提出される材料試験の結果によりその品質を確認することにしている。
(b) コンクリート部材の断面形状、寸法及び位置は、設計図書に建築物として必要な性能を有するように設計された値が指定されており、「標仕」6.2.5 (a)による許容差の範囲に収まるように施工する必要がある。「標仕」表 6.2.3 では一般的な許容差の標準値を示しているが、この数値は本来建築物の機能、部位、仕上げの程度等によって変動するものであり、共通的に定まるものではない。 例えば,石工事(「標仕」10.1.3(c)参照) や左官工事 (「標仕」15.2.3 (c)参照)等のようなコンクリート工事のあと工程となる仕上材料に要求される精度により、「標仕」 表 6.2.3 をそのまま使えない場合もある。 このため、各工事ごとにこの許容差を定めるに当たっては、寸法誤差が生じた場合の影響度等も考慮して、「品質計画」において、適切な値を定める必要がある。
コンクリートは全断面において均質なものとして設計されており、打ち上がったコンクリートはこれを満足させる必要がある。 しかし、打ち上がったコンクリートの内部を確認することは非常に困難であり表面の状態を確認することによって、内部の状態を推定することになる。一般にコンクリート部材の内部と比べて表面付近は鉄筋や型枠等の影響で欠陥が生じやすくなる。このため、「標仕」6.1.2 (b)では、「密実な表面状態」を要求事項とし、コンクリート内部の品質を含めて表面状態で確認することにしている。 コンクリート表面に豆板等の欠陥がある場合には、コンクリートの耐久性や強度に影響を及ぼすため、「標仕」では,せき板取外し後に コンクリート表面を確認することにしている。「品質計画」においては、第一に密実なコンクリートを打ち込むための具体的な方法の提案をするとともに、もし、豆板等が発生した場合、その程度に応じた補修方法等を定めるようにする。この場合の補修方法については 6.9.6 (b)を参考にするとよい。
(c) 建築物の構成部材としてのコンクリートの強度は、実際に出来上がった構造体コンクリートからコアを採取して試験によってその確認ができる。しかし、この方法は建築物を傷つけることになるため、新築建築物にあっては適切ではない。 このため「標仕」6.2.2 では、工事現場において構造体に打ち込まれるコンクリートと同ーのコンクリートを採取して、工事現場内で建築物と同様な温度条件となるように養生した試験体により構造体コンクリートの強度を推定している。 実際のコンクリートの強度は、柱、梁、壁、スラブ等の各部位によって強度の発現にばらつきがあることが分かっており、構造物のどの部位においても設計基準強度を滴足させるため、調合設計において所要の補正を行うことにしている。「所要の強度を有する」とは,こういったことを勘案して 実際の構造体コンクリートの強度が設計基準強度を満足するように適切な養生を行い、試験体の強度から構造体コンクリートの強度を確認すればよい。
「構造耐力、耐久性、耐火性」等は、コンクリートに要求される重要な性能である。これらについては、一般に本章で説明する事項を実現することで必要な性能を得ることができるようになっているが、(b)で説明したように寸法の誤差や、部分的な欠陥の発生を完全になくすことは現実的ではない。 このため、所要の「構造耐力、耐久性,耐火性」を満足させるための、寸法許容差や、欠陥が生じた場合の程度の判断基準及び補修方法をあらかじめ定めておくようにする。

6章コンクリート工事  3節コンクリートの材料及び調合

第6章 コンクリート工事
3 節 コンクリートの材料及び調合
6.3.0 一般事項
建築物に使用するコンクリートが所要の性能を満足するようにするためには、使用前に、各材料が所定の品質を満足することを試験又は生産者から提出された資料等により確認するとともに、「標仕」 2 節[ コンクリートの種類及び品質]に示される各種規定を満足するよう、試し練り等を行って適切に調合することが重要である。

6.3.1 コンクリートの材料

6.2.1(c)でも述べたように、平成28年6月13日に平成12年 建設省告示第1446号の一部が改正され、エコセメントや再生骨材H を使用したコンクリートについても JIS A5308に適合したものであれば国土交通大臣の認定を受けなくても使用できるようになったため、平成28年版「標仕」からは、これらのコンクリートについても一部の材料の組合せや用途を除いて特記をせずに使用できることとなった。

(a) セメント
(1) セメントの分類
( i ) セメントの分類を図6.3.1 に示す。
わが国におけるポルトランドセメント(JIS R 5210)の全アルカリは、低アルカリ形を除くとNa2O換算( Na2O + 0.658K2O ) で 0.75 %以下であるが、使用する骨材によってはアルカリ骨材反応を起こすおそれがある。
なお、かつては「アルカリ骨材反応抑制対策に関する指針について」(平成元年 7月 建設省住指発第244号)の通達で、低アルカリ形ポルトランドセメントの使用がアルカリ骨材反応抑制対策の一つとして記されていた。 しかし、低アルカリ形が1995年に 11.000t 生産されたほかはほとんど製造されておらず、普通ポルトランドセメントのアルカリ量も低くなっていることなどから、平成12年にこの通達は廃止され、平成14年の国土交通省通達では「低アルカリ形の使用による抑制対策」の条文が削除されている。
図6.3.1_JISによるセメントの分類.jpg
図6.3.1 JIS によるセメントの分類
(ii) ポルトランドセメントは普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント及び耐硫酸塩ポルトランドセメントの6種類を基本とし、これに低アルカリ形の6種類を加え全部で12種類あり、その主な品質は表6.3.1に示すとおりである。
表6.3.1 ポルトランドセメントの種類 ( JIS R5210:2009)
表6.3.2_ポルトランドセメントの品質A.jpg

①普通ポルトランドセメント(普通セメントと略称される場合もある。)は、建築のコンクリート工事用として現在最も多く使用されているセメントである。「標仕」では、特記のない場合は普通セメント又は混合セメントのA種を使用することになっているが、高炉セメント及びフライアッシュセメントともA種はほとんど生産されていないがめ、一般には普通セメントを使用することが多い。
②早強ポルトランドセメント(早強セメントと略称される場合もある。)の比表面積(ブレーン値)はJISでは表6.3.1のように定められているが、市販品では 4,700 cm2g程度である。比表面積はセメント粒子の細かさを示す値で、この値が大きいほど細かくセメントと水との化学反応(水和反応)が活発になるため、図6.3.2に示すように他のポルトランドセメントよりも早期に強度が得られる。そのため、工期の短縮に有効であると共に、硬化初期の水和発熱量(凝結・硬化中に起こる発熱を水和熱という。)が大きいことから寒中コンクリートにも適している。ただし、発熱によるひび割れ等の弊害を伴うこともあるので、使用する季節や用途に注意が必要である。
図6.3.2_モルタルの圧縮強さ(JIS R5201).jpg
図6.3.2 モルタルの圧縮強さ (JIS R 5201)
(「セメントの常識」より)
(iii) 高炉セメント(JIS R 5211)は、普通ポルトランドセメントに適量の高炉スラグ微粉末を均ーに混合したもので、その分量によってA種、B種及びC種の3種類(表6.3.2参照)が規定されているが、A種及びC種の生産量は少なく、市販品としてはB種のものが一般的である。
(iv) シリカセメント(JIS R 5212)は、普通ポルトランドセメントに適量のシリカ質の混合材を均ーに混合したもので、その分量によってA種、B種及びC種の3種類(表6.3.2参照)。耐薬品性に優れているが、2010年以降国内では生産されていない。
(v) フライアッシュセメント(JIS R5213)は、普通ポルトランドセメントに適量のフライアッシュ(火力発電所等で石炭の燃焼時に発生する微粉状の石炭灰)を均ーに混合したもので、その分量によってA種、B種及びC種の3種類(表6.3.2参照)が規定されているが、高炉セメントと同様、一般にはB種のものが多く流通している。
(vi) 上記高炉セメント、シリカセメント、フライアッシュセメントの3種類を混合セメントと呼び、このうちB種及びC種の混合セメントは、ポルトランドセメントと比較すると、化学的な作用又は海水に対する抵抗力が大きいなどの長所がある。しかし、同一調合の場合、一般に中性化の進行が早く、早期強度の発現が小さいので、かぶり厚さや型枠の存置期間の検討が必要である。
表6.3.2 混合セメントの種類 (JIS R5211 : 2009、R5212:2009及びR5213:2009)
表6.3.1_混合セメントの種類A.jpg
(ⅶ) エコセメントは、都市ごみ焼却灰を主とし、必要に応じて下水汚泥等を加えたものを主原料として製造される資源リサイクル型のセメントであり、2002年に JIS R5214 (エコセメント)として JIS化された。JIS R5214では、構成鉱物や塩化物イオン含有量によって普通エコセメントと速硬エコセメントに分類されている。2003年には、これらのうち塩化物イオン量が 0.1%以下の普通エコセメントのみが、JIS A5308(レディーミクストコンクリート)に取り入れられた。また、 2004年 4月からはグリーン購入法特定調達品目にも指定されている。

解説
ポルトランドセメントとは
固まったときの色合いが、イギリスのポートランド島の石灰石に似ているので、ポルトランドセメントと名づけられた。粘土、石灰石を粉砕、焼成して石膏を加えてつくる。
(2) 高炉セメント及びフライアッシュセメントの品質
(i) 高炉セメントは、高炉スラグ微粉末の混合比(分量)によって使用したコンクリートの硬化途中の強度発現性状等が異なるため、上記 (1)(ⅲ)でも記したように、高炉スラグ微粉末(分量)によって3種類に分類されている。B種は規格上 30%を超え60%以下となっているが、市販されている高炉セメントの高炉スラグの混合比(分量)は 43%前後のものが多い。
普通ポルトランドセメントと比較すると次のような特徴がある。
① 初期強度はやや小さいが、4週以降の長期強度は同等又は同等以上になる。
② 耐海水性や化学抵抗性が大きい。
③ 一定量以上使用した場合にアルカリ骨材反応の抑制に効果がある。
(ii) フライアッシュセメント
良質なフライアッシュはコンクリート中でボールベアリングのような働きをし、練混ぜ水を減少させることができ、ワーカビリティーの良いコンクリートが得られる。 また、水和発熱量が比較的小さく、マスコンクリートに適する。更に、高炉セメントと同様にアルカリ骨材反応の抑制にも効果がある。
なお、上記(1)(ⅴ)でも記したように、フライアッシュの混合比(分量)によって3種類に分類されており、B種は規格上 10%を超え20%以下となっている。市販されているフライアッシュセメントのフライアッシュの混合比(分量)は 17%前後のものが多い。
(b) 骨 材
(1) 骨材は、コンクリート体積の約7割を占め、その品質がコンクリートの諸性質に大きな影響を及ぼすので、良い品質のコンクリートをつくるためには原則として.堅硬で物理的・化学的に安定であり、適度な粒度・粒形を有し、有害量の不純物・塩化物等を含まない骨材を使用する。しかし、骨材の品質は、地域差もあり、あらかじめその地域の骨材の種類と品質の実態を把握しておくことが重要である。やむを得ず低品質の骨材を使用しなければならない場合には、コンクリートの要求性能と骨材の品質との関係を試し錬りを行って十分に把握し、必要に応じて計画調合等を検討することが重要である。
(2) 骨材の種類及び品質
(i) 骨材の種類は、「 標仕」6.3.1 (b)により、JIS A5308の附属書A (規定)[レディーミクストコンクリート用骨材]に規定されている砕石及び砕砂、スラグ骨材、人工軽量骨材、再生骨材H並びに砂利及び砂である。
(ii) フェロニッケルスラグ細骨材、銅スラグ細骨材及び電気炉酸化スラグ骨材は、普通骨材に比べて密度が大きく、使用される地域も限定されている。また、再生骨材H は、全国的に十分な供給量がまだ流通していない。よって、これらの骨材を使用する場合は、設計担当者が特記しなければならない。
(iii) 骨材の品質は、砕石及び砕砂は、JIS A5005(コンクリート用砕石及び砕砂)に、高炉スラグ粗骨材及び高炉スラグ細骨材は、JIS A5011-1(コンクリート用スラグ骨材ー第1部:高炉スラグ骨材)に、フェロニッケルスラグ骨材、銅スラグ骨材、電気炉酸化スラグ骨材及び再生骨材H は、それぞれ JIS A5011-2(コンクリート用スラグ骨材ー 第2部:フェロニッケルスラグ骨材)、JIS A5011-3(コンクリート用スラグ骨材ー第3部:銅スラグ骨材)、JIS A5011-4(コンクリート用スラグ骨材ー第4部:電気炉酸化スラグ骨材)及びJIS A5021(コンクリート用再生骨材H ) に規定されている。
(iv) スラグ骨材を他の骨材と併用する場合、表面がガラス質のため、使用するスラグ細骨材の種類によっては保水性が小さくなり、 天然の骨材に比ベブリーディング量がやや多くなったりブリーディング速度が速くなったりする場合があるので注意しなければならない。 このような場合には、微粉末の使用、実積率の大きい骨材の使用、高性能AE減水剤の使用等材料の選定に加え、水セメント比の低減等の検討が必要である。
(v) 骨材の密度及び吸水率
① 骨材の強さは、密度及び吸水率によりある程度の判定ができる。通常、絶乾密度は 2.5g/cm2以上、吸水率は 3.0%(細骨材は 3.5%)以下ならよいとされている(表6.3.3 参照)。
しかし、砂利や砂の場合、一部の地方では、これを満足するものが人手できない場合もある。 この場合は、絶乾密度は 2.4g/cm2以上、吸水率は 4.0%以下なら、コンクリートとして所要の性能が得られることを試し練り又は信頼できる資料等により確かめられれば使用してよい。
表6.3.3 JIS A 5005 : 2009による砕石・砕砂の物理的性質
表6.3.3_砕石・砕砂の物理的性質.jpeg
② 普通の石材の吸水率は表6.3.4 に示すとおりであるが、おおむね吸水率の少ないものほど堅硬、密実で良質の骨材になると考えられる。
表6.3.4 石材の吸水率
表6.3.4_石材の吸水率.jpeg
③骨材の絶乾状態及び気乾状態並びにその際の吸水量、含水量等の関係を図6.3.3 に記す。
図 6.3.3_骨材の含水状態.jpeg
図 6.3.3 骨材の含水状態
(3) アルカリ骨材反応抑制対策
( i ) アルカリ骨材反応に関しては、昭和60年頃から問題が顕在化し、平成元年には建設省の技術審議官通達、監督課長通知、建築指導課長通知等が出されたが、平成14年には新たに「アルカリ骨材反応抑制対策について」(平成14年国官技第112号:技術審議官等通達)と連用のための「「アルカリ骨材反応抑制対策について」について」(平成14年 国営技第55号:建築課長通達)の(別紙)「アルカリ骨材反応抑制対策(建築物)実施要領」が、平成15年には「アルカリ骨材反応抑制対策(建築物)実施要領に関する運用について」 の事務連絡が出され、その後のJIS A5308(レディーミクストコンクリート)の改正、 JIS Q1011 (適合性評価一日本工業規格への適合性の認証一分野別認証指針(レディーミクストコンクリート))の制定、「標仕」の改定を経て、その対策が確立されてきた。
(ii) 「アルカリ骨材反応抑制対策(建築物) 実施要領」における検査・確認の方法を、次に示す。
① アルカリシリカ反応性試験方法(化学法)による骨材試験は、施工着手前、工事中 1回/6箇月、かつ、産地が変わった場合に、受注者等が公的試験機関に依頼して行う。 また、試験に用いる骨材の採取にも受注者等が立ち会うことが原則となる。
② アルカリシリカ反応性試験方法(モルタルバー法)による骨材試験は、コンクリート生産工程管理用試験に規定される骨材のアルカリシリカ反応性試験方法(迅速法) で骨材が無害であることを受注者等が確認する。この場合も、施工着手前、 工事中1回/6 箇月、かつ、産地が変わった場合に、公的試験機関で行い、試験に用いる骨材の採取にも受注者等が立ち会うことが原則となる。
(iii) 「標仕」では、高炉スラグ骨材を除いて、原則として骨材は「アルカリシリカ反応性試験の結果が無害と判定されるもの」(アルカリシリカ反応性による区分Aのもの)を使用することとしているのでアルカリシリカ反応性による区分を受注者等にレディーミクストコンクリート配合計画書及びアルカリシリカ反応性試験成績表で確認させておく必要がある。
なお、アルカリシリカ反応性試験方法は、JIS A1145(骨材のアルカリシリ力反応性試験方法(化学法)) 又は JIS A1146(骨材のアルカリシリカ反応性試験方法(モルタルバー法))による。
(iv) しかし、地域等によっては、上記の試験の結果が 「無害と判定されないもの」や「試験を行っていないもの」(アルカリシリカ反応性による区分Bのもの)を使用せざるを得ない場合もある。 その場合は、事前調査により設計担当者が区分Bのものを使用することを特記しなければならない。 特記により区分Bの骨材を使用する場合は「標仕」 6.3.1 (b)(2)に基づいた対策を受注者等に提案させ、その内容を設計担当者等と検討して対応の可否を判断する 。
(4) 高炉スラグ粗骨材を使用する場合は、JIS A5011-1 に基づいて使用する骨材の絶乾密度吸水率及び単位容積質量が、 同 JIS の区分Nを満足することを受注者等に確認させ、その結果を報告させることが必要である(表 6.3.5 参照)。なお、高炉スラグ粗骨材は、普通骨材より吸水率が大きく気乾状態で用いると練混ぜ運搬及び打込み中にフレッシュコンクリートの品質が変動しやすいので、事前に散水により吸水させて用いることが望ましい。
(5) 電気炉酸化スラグ骨材は、JISマーク表示認証製品で、生産工場からレディーミクストコンクリート工場に直接納入されていること及び電気炉酸化スラグ粗骨材の絶乾密度による区分が Nであること(表6.3.5 参照)、並びに再生骨材H は、 JIS マーク表示認証製品であることを受注者等に確認させ、その結果を報告させることが必要である。
表6.3.5 JIS A 5011-1 : 2013による高炉スラグ粗骨材(区分N) 及び
JIS A 5011-4 : 2013による電気炉酸化スラグ粗骨材(区分N) の材質
表6.3.5_高炉スラグ粗骨材及び電気炉酸化スラグ粗骨材(区分N).jpg
(6) 粗骨材の最大寸法等
(i) 粗骨材の最大寸法
粗骨材は、鉄筋相互間及び鉄筋とせき板との間を容易に通る大きさでなければならない。 粗骨材の最大寸法は「標仕」 において次のように定めている。
① 砕石、高炉スラグ粗骨材、電気炉酸化スラグ粗骨材及び再生粗骨材H は20mmとする。また、砂利は 25mmとする。
② 基礎等で 断面が大きく鉄筋量の比較的少ない部材の場合は、「標仕」5.3.5[鉄筋のかぶり厚さ及び間隔]の範囲で砕石、高炉スラグ粗骨材及び再生粗骨材Hは 25mm、また、砂利は 40mmとすることができる。
③ 鉄筋のあきは、粗骨材の最大寸法の 1.25倍以上とする(「標仕」5.3.5 (d)(1) 参照)
④ 無筋コンクリートの粗骨材の最大寸法は、コンクリート断面の最小寸法の1/4 以下、かつ、40mm以下とする。ただし、捨コンクリート及び防水層の保護コンクリートの場合は25mm以下とする (「 標仕 」 6.14.2 (a)参照)。
(ii) 骨材の粒度及び粒形
① 骨材は、適切な粒度分布のものでなければならない。 粒度の良否によってコンクリートのワーカビリティーや単位セメント量に著しい差が生じ、ひいてはコンクリートの強度や耐久性にも影響を与える。
② 骨材の形は、球形に近いものが理想的で、偏平、細長のもの、かど立っているものなどは、コンクリートのワーカビリティーを悪くし、同一水セメント比で同一スランプを得るための細骨材率が大きくなり、単位水量、単位セメント量も多くなる。 また、偏平、細長のものは、コンクリートが外力を受けたときに不均ーな応力分布が生じて、破壊しやすいためにコンクリートの強度も低下する。
③ 粒度分布を表すには次のような方法があり通常 1) 及び 2) が用いられる。
1) 各ふるいの通過率
2) 粗粒率〈FM〉
3) 各ふるいの累加残留率
4) 各ふるいの残留率
④ コンクリートの品質を確保して圧送性を良くするには、骨材の粒度分布が適切であるとともに 0.3mm以下の細骨材が 15~30%混入していることが望ましい。
(7) その他留意が必要な骨材の品質
(i) 骨材の単位容積質量・実積率
① 単位容積質量は、単位容積当たりの骨材質量 (kg /ℓ) で、骨材の粒度が適切であれば、最大寸法が大きいほど単位容積質量は大きい。
② 実積率は骨材を容器に詰めた場合、どの程度隙間なく詰まっているかを表す指標で、 6.3.1 式より求める。 空隙率は 6.3.2 式による。
実積率
=骨材の単位容積質量 / 骨材の絶乾密度 × 100 (%)  (6.3.1式)
空隙率 =100 - 実積率(%)..........(6.3.2式)
③ 同一粒度、同一密度の骨材では、実積率が大になるほど骨材の粒形が良いことになる。また、骨材の密度、最大寸法及び粒度が同様な場合には、粒度分布が良いほど実積率は大となる。
④ 骨材に対応する標準的実積率を表6.3.6 に示す。
表 6.3 6 骨材の実積率の標準的な値
表6.3.6_骨材の実績率の標準的な値.jpg
(ii) 骨材中の泥分
泥分が骨材表面に付着していると、骨材とセメントペーストとの付着を妨げ、コンクリートの強度を低下させる。また、コンクリート中に混合している場合は、単位水量が増加し、体積変化も大きく、ひび割れも発生しやすい。
(iii) 細骨材の有機不純物
有機不純物としては、腐植土、泥炭質等があり、これらに含まれるフミン酸やタンニン酸の量が多いと、セメントベースト中の Ca(OH)2と反応して有機酸石灰塩を生じ、コンクリートの硬化を妨げ、強度や耐久性を低下させる場合がある。
(iv) 細骨材中の塩化物
① コンクリート中の鋼材は、コンクリートの pHが10 以上の場合は、鋼の表面が鉄の水酸化物 Fe(OH)2の不働態皮膜で覆われているので錆は発生しないが、多量の塩化物が混合すると、塩化物イオンによって不働態皮膜が破壊されて錆が発生する。
② JIS A5308 附属書(規定)では、砂に含まれる塩化物量を NaCl 換算で 0.04 %以下と規定しているが、2003年の JIS R5210(ポルトランドセメント)の改正により普通ポルトランドセメントの塩化物イオンが 0.02%以下から 0.035%以下となった。これにより、コンクリートの各材料の塩化物イオンの規格上限値でコンクリート中の塩化物イオン量を算出すると0.30kg/m3を超える場合があるので、受注者等にレディーミクストコンクリート配合計画書でコンクリート中の塩化物イオン量が 0.30kg/m3を超えないことを確認させ、その結果を報告させるようにするとよい。
なお、プレテンション方式のプレストレストコンクリート部材に用いる場合は 0.02 %以下とすることになっている。
(v) 骨材を混合して使用する場合
① 最近では1種類の骨材だけでは所要の品質や量を確保することが困難となり、複数の骨材を混合して使うことが多くなった。
② 骨材を混合して使用する場合は、JIS A5308 附属書A(規定)の A.9[骨材を混合して使用する場合]による。
1) 同一種類の骨材(例:川砂利と陸砂利(玉砕も含む。)、海砂と山砂)を混合して使用する場合は、混合したものの品質が所定の規定に適合しなければならない。ただし、混合前の各骨材の絶乾密度、吸水率、安定性及びすりへり減量については、それぞれの骨材の規定に適合しなければならない。
2) 異種類の骨材(例:川砂利と砕石、海砂と砕砂あるいは高炉スラグ細骨材等)を混合して使用する場合は、混合前の骨材の品質がそれぞれの規定に適合しなければならない。ただし、粒度調整や海砂の塩化物量の低減目的に混合する場合には、粒度と塩化物量については、混合したものが所定の規定に適合していればよい。
(vi) 全国的に見た骨材の品質と種類を図6.3.4に示す。
図6.3.4_全国的に見た骨材の種類(2012暦年).jpg
図6.3.4 全国的に見た骨材の種類(2012暦年)
(経済産業省製造産業局住宅産業窯業建材課
「生コンクリート統計四半期報」のデータによる)
解説
砂(細骨材)、砂利(粗骨材)の容積比
は約30%と約40%。コンクリートの骨となる材料で、砂は細骨材、砂利は粗骨材といい、5mmを境に区別している。
(c)  水
(1) 水は、コンクリートの凝結時間、硬化後のコンクリートの強さ等の諸性質、鋼材の発錆等に影響があり、極めて重要な材料といえる。
(2) 一般に、セメントの水和に必要な水量は、セメント質量の約40%といわれ、施工時に必要な水量の内、残りの部分はコンクリートのワーカビリティーを良くするものであり、コンクリートの硬化に関与しない余剰水となる。 また、単位水量が多いと乾燥収縮が大きくなったり、透水性が高くなり、耐久性が低下しやすい。
(3) 水中の不純物が鉄筋コンクリートに与える影響
(i) 一般に、アルカリ性の強い水はセメントの凝結を遅くし、弱酸性の水は凝結を早め、強酸性では硬化しにくくなる。
(ii) 苦土や石灰は、セメントの安定性を低下させる。
(iii) 塩化物や塩素は、鉄筋の腐食を助長する 。
(iv) 水の不純物の種類と量の限度は、使用するセメントの組成、使用量等によって異なり、規定しにくいとされているが、濃度が1,000ppm 以下ならば、ほとんど影響がないといわれている。
(4) 水の使用基準等については、JIS A5308(レディーミクストコンクリート)附属書C(規定)があり、この抜粋を次に示す 。
JIS A5308: 2011
附属書C(規定) レディーミクストコンクリートの練混ぜに用いる水
C.1 適用範囲
この附属書は、レディーミクストコンクリートの練混ぜに用いる水(以下、水という。)について規定する。
C.2 区分 
水は、上水道水、上水道水以外の水及び回収水に区分する。
C.3 定義 
この附属書で用いる主な用語の定義は、次による。
C.3.1 上水道水以外の水
河川水、湖沼水、井戸水、地下水などとして採水され、特に上水道水としての処理がなされていないもの及び工業用水。ただし、回収水を除く。
C.3.2 回収水
レディーミクストコンクリート工場で、洗浄によって発生する排水のうち、運搬車プラントのミキサ、ホッパなどに付着したレディーミクストコンクリート及び戻りコンクリートの洗浄排水(以下、コンクリートの洗浄排水という。)を処理して得られるスラッジ水及び上澄水の総称。
C.3.3 スラッジ水

コンクリートの洗浄排水から、粗骨材、細骨材を取り除いて、回収した懸濁水。

C.3.4 上澄水
スラッジ水から.スラッジ固形分を沈降その他の方法で取り除いた水。
C.3.5 スラッジ

スラッジ水が濃縮され、流動性を失った状態のもの。

C.3.6 スラッジ固形分

スラッジを105〜110℃で乾媒して得られたもの。

C.3.7 スラッジ固形分率

レディーミクストコンクリートの配合における単位セメント量に対するスラッジ固形分の質量の割合を百分率で表したもの。

C.4 上水道水

上水道水は、特に試験を行わなくても用いることができる。

C.5 上水道水以外の水

上水追水以外の水の品買は、C.8.1 の試験方法によって試験を行い、表 C.1 に示す規定に適合しなければならない。

表 C.1 上水道水以外の水の品質
表C.1_上水道水以外の水の品質.jpg
C.6 回収水
C.6.1 品質

回収水の品質は.C.8.2 の試験方法によって試験を行い、 表C.2 に示す基定に適合しなければならない。 ただし、その原水は C.4 又は C.5 の規定に適合しなければならない。

なお、スラッジ水を上水道水、上水道水以外の水、又は上澄水と混合して用いる場合の品質の判定は、スラッジ固形分率が 3 %になるように、スラッジ水の濃度を5.9 %に調整した試科を用い、C.8.2.4及び C.8.2.5の試験を行う。
表 C.2 回収水の品質s
表C.2_回収水の品質.jpg
C.6.2 スラッジ固形分率の限度
a) スラッジ水を用いる場合には、スラッジ固形分率が 3%を超えてはならない。なお、レディーミクストコンクリートの配合において、スラッジ水中に含まれるスラッジ固形分は水の質量には含めない。
b) スラッジ固形分率を 1%未満で使用する場合には、12.1に規定する表8(レディーミクストコンクリー ト配合計画書)の目標スラッジ固形分率の欄には、’’1 %未満’’と記述することとし、この場合のスラッジ固形分率の値は、管理期間ごとに 1%未満となることを確認すればよいこととする。
なお、このスラッジ固形分率を 1%未満で使用する場合には、スラッジ固形分を水の質量に含めてもよい。
C.6.3.3 スラッジ水の管理
スラッジ水の管理は、次による。
a) バッチ濃度調整方法 又は連続濃度測定方法を用いる。
バッチ濃度調整方法は、スラッジ水の濃度を一定に保つ独立した濃度調整槽をもつ場合に用いることができる管理方法である。独立した濃度調整槽をもたない場合には、スラッジ水の濃度を連続して測定できる自動設度計を設置して測定することによる連続濃度測定方法を用いればスラッジ水の管理ができる。
b) C.6.2 に適合するように、スラッジ水の管理状況に対応して、コンクリートに使用するスラッジ水の濃度を定めて管理する。
c) バッチ濃度調整方法を用いる場合には、スラッジ水の濃度を測定・記録し、目標スラッジ固形分率となるようにスラッジ水の計量値を決定して、スラッジ水を使用する。
なお、スラッジ水の設度の測定は、1日1 回 以上、かつ、濃度調整の都度行う。
d) 連続濃度測定方法を用いる場合に、はスラッジ水を使用する度にその濃度を自動濃度計によって測定・記録し、自動演算装置を用いて目標スラッジ固形分率となるようにスラッジ水の計量値を決定して、スラッジ水を使用する。
e) スラッジ水の濃度の測定精度の確認は、少なくとも3 か月に1 回の頻度で.C.8.2.6によって行う。 また、スラッジ水の濃度の測定方法として自動濃度計を用いる場合は、始業時にスラッジ水の密度から自動濃度計の表示値を確認し、これを記録する。
f) スラッジ水の濃度及び測定器具の精度確認の記録は、購入者からの要求があれば、スラッジ固形分率の算出根拠として提出する。
C.7 水を混合して使用する場合
2種類以上の水を混合して用いる場合には、それぞれが C.4、C.5 又はC.6 の規定に適合していなければならない。
JIS A5308:2011

(d) 混和材料
(1) 混和材料の使用目的は、おおむね次のとおりである。
(i ) ワーカビリティーの改良
(ii) 長期材齢又は初期材齢における強度の増大
(iii) 水密性の増大
(iv) 乾燥収縮の低減
(v) 耐久性の向上
(2) 混和材料の分類を、 図 6.3.5 に示す。
図6.3.5_混和材料の分類.jpeg
図6.3.5 混和材料の分類
混和材料について「標仕」 6.3.l (d)では、種類及び適用は特記 によるとし、特記がなければ.種類は次によるとしている。
( i ) 混和剤の種類は、JIS A6204(コンクリート用化学混和剤)によるAE剤、AE減水剤又は高性能AE減水剤とし、化学混和剤の塩化物イオン(Cl)量による区分は、I 種とする。また、防錆剤を併用する場合は、JIS A6205(鉄筋コンクリート用防せい剤) による防錆剤とする。
(ii) 混和材の種類は、JIS A6201(コンクリート用フライアッシュ)によるフライアッシュの Ⅰ 種、 lI 種若しくはⅣ種 JIS A6206( コンクリート用高炉スラグ微粉末)による高炉スラグ微粉末、JIS A6207(コンクリート用シリカフューム) によるシリカフューム又は JIS A6202(コンクリート用膨張材)による膨張材とする。
(3) JIS A6204(コンクリート用化学混和剤)の抜粋を次に示す。
なお、JIS A6204 は 2011 年の改正で、6.2のコンクリート試験における空気量は、基準コンクリートの空気量に 3.0%を加えたものに対して、0.5 % を超える差があってはならないこととなった。 また、練混ぜのバッチ数は 1 バッチとすること、圧縮強度試験用供試体の養生温度は 20±2℃とすること、コンクリートの試験日数は 1 日とすること及び管理試験の名称を性能確認試験と改め、 6箇月に 1回の頻度で実施することとなった。
JIS A 6204 : 2011
1 適用範囲
この規格は、コンクリート用化学混和剤(以下、化学混和剤という。)として用いる AE剤、高性能減水剤、硬化促進剤、減水剤、AE減水剤、高性能AE減水剤及び流動化剤について規定する。
3 用語及び定義
この規格で用いる主な用語の定義は、JIS A0203(コンクリート用語)によるほか次による。
3.1 化学混和剤
主として、その界面活性作用及び/ 又は水和調整作用によって、コンクリートの諸性質を改善するために用いる混和剤。
3.2 AE剤
コンクリートなどの中に、多数の微細な独立した空気泡を一様に分布させワーカビリティー及び耐凍害性を向上させるために用いる化学混和剤。
3.3 高性能減水剤
所要のスランプを得るのに必要な単位水量を大幅に減少させるか、又は単位水量を変えることなくスランプを大幅に増加させる化学混和剤。
3.4 硬化促進剤
セメントの水和を早め、初期材齢の強度を大きくする化学混和剤。
3.5 減水剤
所要のスランプを得るのに必要な単位水量を減少させる化学混和剤。
3.6 AE減水剤
空気連行性能をもち、所要のスランプを得るのに必要な単位水量を減少させる化学混和剤。
3.7 高性能AE減水剤
空気連行性能をもち、AE減水剤よりも高い減水性能及び良好なスランプ保持性能をもつ化学混和剤。
3.8 流動化剤
あらかじめ練り混ぜられたコンクリートに添加し、これをかくはんすることによって、その流動性を増大させることを主たる目的とする化学混和剤。
3.9 標準形
化学混和剤の種類で、コンクリートの凝結時間をほとんど変化させないもの。
3.10 遅延形
化学混和剤の種類で、コンクリートの凝結を遅延させるもの。
3.11 促進形
化学混和剤の種類で、コンクリートの凝結及び初期強度の発現を促進させるもの。
3.12 基準コンクリート
化学混和剤の性能を試験する場合に基準とする化学混和剤を用いないコンクリート。ただし、流動化剤の性能を試験する場合にはAE剤を使用する。
3.13 試験コンクリート
化学混和剤の性能を試験する場合に試験の対象とする化学混和剤を用いたコンクリート。
3.14 形式評価試験
製品を開発した当初に性能確認として行う全項目試験。
3.15 性能確認試験
形式評価試験で確認された性能と同等の性能をもつことを定期的に確認するために、その一部項目について行う試験。
4 種類 
化学混和剤の種類は、性能によって表1、塩化物イオン(Cl)量によって表 2のとおり、それぞれ区分する。
表1_化学混和剤の性能による区分.jpg
表1 化学混和剤の性能による区分
表2_化学混和剤の塩化物イオン量による区分.jpg
表2 化学混和剤の塩化物イオン(Cl)量による区分
5 品質
5.1 性能
化学混和剤の性能は、6.2 によって試験を行ったとき、表3に適合しなければならない。 (6.2 省略)
表 3-化学混和剤の性能
表3_化学混和剤の性能A.jpg
5.2 塩化物イオン (Cl)量
塩化物イオン量は、6.3によってコンクリート中の量を求め、その値が表2に適合しなければならない。(6.3 省略)
5.3 全アルカリ量 
全アルカリ量は、6.4 によってコンクリート中の量を求め、その値が0.30kg/m2 以下でなければならない。(6.4省略)
JIS A 6204 : 2011
(4) AE剤
AE剤は、コンクリート中に無数の独立した微細気泡を連行させることができる。この気泡は、コンクリートに次のような効果をもたらす。
① ワーカビリティーが良くなる(気泡のボールベアリング作用による。)。
② 単位水量を減少させることができる(一般にプレーンコンクリートに比べて 8%程度減少できる。)。
③ コンクリートの凍結融解に対する抵抗性を増し、耐久性を向上させる。
④ 中性化に対する抵抗性を増大させる。
⑤ 圧縮強度は、空気量にほぼ反比例して低下する。
(5) AE減水剤
(ⅰ) AE減水剤は性能に応じて、標準形、遅延形及び促進形に分けられる。その用途等は次のとおりである。
① 標準形は、主として一般のコンクリートに用いられる。
② 遅延形は、コンクリートの凝結を遅らせ、暑中コンクリートやマスコンクリート等に用いる場合がある。
③ 促進形は.コンクリートの初期強度の発現を促進し、寒中コンクリート等に用いる場合がある。
(ⅱ) AE減水剤は、セメント粒子に対する分散作用と空気連行作用を併有する混和剤で、所要のコンシステンシーを得るための単位水量は、プレーンコンクリー トに比べて 12~16%減少できる。
(6)高性能AE減水剤
高性能AE減水剤は、高い減水性とスランプ保持性能を有する混和剤で、凝結時間が通常のコンクリートとあまり変わらない標準形と、暑中コンクリートやマスコンクリート等に適した遅延形とがある。
その主成分の化学的組成からナフタリン系、ポリカルボン酸系、メラミン系、アミノスルフォン酸系に分類される。ただし、この分類は、あくまで便宜的なもので、同系統に属していてもコンクリートに用いたときの性能は、主成分の化学構造が全く同じでないこと、配合されている副次成分の違いなどから必ずしも同ーではない。
高性能AE減水剤は、従来の AE剤や AE減水剤と同様にプラントでミキサーに投入し、他の材料と同時に練り混ぜる方式により、プレーンコンクリートに対し減水率を 16~25 %程度にすることができる化学混和剤であり、特にスランプロス防止に重点をおいて開発されたものである。
高性能AE減水剤の主な機能は、①高いセメント分散作用、②スランプ保持作用であり、用途としては次のようなものが挙げられる。
① 単位水量上限規制への対応
② コンクリートの高耐久性化(単位水量の大幅低減)
③ 高流動コンクリートの製造
④ 高強度コンクリートの製造
⑤ 単位セメント量低減による水和熱の低減等
(7) 流動化剤
流動化剤は,あらかじめ練り混ぜられたコンクリートに添加、かくはんし流動性を増して、コンクリートの品質と施工性の改善をする混和剤である 。
なお、 I 類コンクリートであっても、レディーミクストコンクリート工場出荷後、荷卸し地点等で流動化剤を添加する場合は、JIS Q1001(適合性評価 日本工業規格への適合性の認証 一般認証指針)及びJIS Q1011(適合性評価 日本工業規格への適合性の認証一分野別認証指針(レディーミクストコンクリート))の認証範囲から外れる可能性がある。 このような場合には、II 類コンクリートとして扱わなくてはならないので、その使用には注意が必要である。
(8) フライアッシュ
( i ) フライアッシュは、燃料として微粉炭を使用している火力発電所のボイラーの煙道に設けられた集塵機で回収される鉱物質の微粉で、人工ポゾランの一種である。 良質なフライアッシュは粒子表面が滑らかで球状を呈しているので、AE剤による気泡と同様な作用をする。
(ii) 良質なフライアッシュを混合すると同ースランプのコンクリートを得るのに、混合率(内割り)10%(質量比)当たり単位水量を3~4%程度減らすことができる。
(iii) フライアッシュは JIS A 6201(コンクリー ト用フライアッシュ)の I 種、II 種 又はⅣ種に適合するものとし、ワーカビリティーや圧送性の改善、プリーディングの減少、水和熱の抑制等の目的で、セメントの一部として(内割り)あるいば骨材の一部として(外割り)用いられる(内割り、外割りについては(vi)参照)。フライアッシュの品質を表6.3.7 に示す。
表6.3.7_フライアッシュの品質(JISA6201).jpg
表6.3. 7 フライアッシュの品質 (JIS A 6201 : 2008)
(iv) フライアッシュを内割りに混合する場合の混合率の限度は、セメント量の10%以内とする。
(v) フライアッシュの混合によりコンクリー トの中性化が促進されるといわれているので鉄筋に対するコンクリー トのかぶり厚さを確保するよう特に注意する。
(vi) フライアッシュ の混合の内割り、外割り
①フライアッシュを「内割りに混合する」とは図6.3.6 のような割合に混合することをいう。「標仕」6.3.2(2)(vi)③の場合に適用する。
図6.3.6_フライアッシュの混合の内割り.jpg
図6.3.6 フライアッシュの混合の内割り
②フライアッシュを「外割りに混合する」とは図 6.3.7 のような割合に混合することをいう。「標仕」6.3.2(2)(vi)②の場合に適用する。
図6.3.7_フライアッシュの混合の外割り.jpg
図6.3.7 フライアッシュの混合の外割り
6.3.2 コンクリートの調合
コンクリートの計画調合は、所要のスランプ、空気量、強度及び耐久性が得られ、かつ、「標仕」2節に示される各規定の要求事項を満足するよう、次の項目に注意して定めなければならない。
(1) 調合管理強度及び調合強度
(i) 調合管理強度
平成19年版「標仕」では、調合管理強度(Fm)に相当する値は、設計基準強度(Fc)、構造体コンクリートと供試体強度との差(△F= 3 N/mm2)、気温によるコンクリート強度の補正値(T)を考慮して(Fc+△F+T)としていたが、平成22年版「標仕」からは、調合管理強度は、(△F+ T)に代わって、セメントの種類及びコンクリートの打込みから材齢28日までの予想平均気温に応じて定められた構造体強度補正値(S)を取り入れ(Fc+S)に改められている。
(ⅱ) 構造体強度補正値(S) はセメントの種類、予想平均気温の範囲に応じて「標仕」表6.3.2に示すように、3N/mm2、6N/mm2としている。
なお、構造体コンクリートの強度については 6.2.2(c)を参照するとよい。
(ⅲ) 調合強度(F)は、一般的には標準養生した供試体の材齢 m 日における圧縮強度で表し、6.3.3式を満足するように定めることになる。
 F ≧ Fm + α × σ ( N/mm2 ) ・・・(6.3.3 式)
 α:はコンクリートの許容不良率に応じた正規偏差
 σ:強度のばらつきを表す標準偏差
JASS5 では、αを許容不良率 4%に相当する 1.73 を用いている。また、σは発注するレディーミクストコンクリート工場の実績に基づいた値を用いればよい。もし発注するコンクリートの生産実績が少ないなどの場合には、2.5 N/mm2又は 0.1 Fm の大きい方の値を用いる。
(2)調合条件
コンクリートに要求される品質として、所要の強度を確保すること、打込み時のワーカビリティーを確保することは当然であるが、近年、鉄筋コンクリート造の構追物が劣化している様々な事例が指摘されており、コンクリートの耐久性(コンクリート中の塩化物含有量、中性化、ひび割れ、海塩粒子、アルカリ骨材反応による影響等に対して)を確保することがコンクリート構造物の継続的利用に極めて重要となっている。 これらの理由から「標仕」では次の規定を設けている。
なお、次にいう水セメント比の最大値、単位水量の最大値及び単位セメント量の最小値とは、レディーミクストコンクリート工場において調合設計を計画した時のそれぞれの目標値のことである。
① 「標仕」では.荷卸し地点における空気量は、4.5%と規定されている。
AE剤、AE減水剤、高性能AE減水剤を用いて、コンクリート中に微細な空気泡を連行すると、連行空気量にほぼ比例して所定のスランプを得るのに必要な単位水量を低減でき、ワーカビリティーが改善されるとともに、凍結融解作用に対する抵抗性が増大する。しかし、空気量が 6 %以上になるとそれ以上空気量を増やしてもフレッシュコンクリートの品質は改善されなくなり、空気量が 3%未満では凍結融解作用に対する抵抗性の改善に対する効果が少ない。 このため空気量の確認時期・地点を荷卸し地点とし、その時のコンクリートの空気量を 4.5%としている。
水セメント比の最大値(上限値)は、平成22年版「標仕」では、普通ポルトランドセメント及び混合セメントの A種は 65%、混合セメントのB種は60%とされていたが、平成25年版「標仕」では新たに早強ポルトランドセメント及び中庸熱ポルトランドセメントを使用する場合は65%、 低熱ポルトランドセメントを使用する場合は60%とする規定が追加されている。
鉄筋コンクリートの一般的な劣化は、コンクリート表面からの水・炭酸ガス・塩化物その他の浸入性物質によりもたらされるが、これらの劣化要因からコンクリートを健全に守るためには、一般に水セメント比を小さくすればよい。このため強度上必要な水セメント比とは別にコンクリートのワーカビリティー・均一性・耐久性を確保するために水セメント比の最大値を定めている。
③ 「標仕」では、単位水量の最大値を185kg/m3 と規定するとともに、コンクリートの強度気乾単位容積質量、ワーカビリティー、スランプ及び構造体コンクリートの仕上り状態が「標仕」2節に規定される品質を満足する範囲でできるだけ小さくするよう規定されている。
近年、良好な砂利、砂に代わり砕石、砕砂が多用されるようになると、スランプを一定値以下に抑えても単位水量は大きくなる一方であり、コンクリートの乾燥収縮率の増大が懸念されている。その一方で、最近は高性能AE減水剤によりコンクリートのスランプを比較的容易に変えることができるようになり、単位水量が 185kg/m3 以下でもスランプ 18cmにすることが容易となっている。このような理由から、コンクリートの品質を確保するためにスランプの規制以外に単位水量の制限が設けられている。
④ 「標仕」では、単位セメント量の最小値を 270kg/m3と規定するとともに、②の水セメント比及び③の単位水量から算出した数値以上と規定されている。
なお、単位セメント量は、6.3.4式によって求められる。
C =W / x ×100 ・・・・・・(6.3.4式)
C:単位セメント量 (kg/m3)
W:単位水量  (kg/m3)
x:水セメント比  ( %)
単位セメント量は水和熱及び乾燥収縮によるひび割れを防止する観点からできるだけ少なくすることが望ましい。しかし、単位セメント量が過小であるとコンクリートのワーカビリティーが悪くなり型枠内へのコンクリートの充填性の低下、豆板や巣、打継ぎ部における不具合の発生、水密性、耐久性の低下等を招きやすい。 このためコンクリートの強度を確保するための条件とは別に単位セメント量の最小値が規定されている。
⑤ 細骨材率
「標仕」 では、「2節に規定するコンクリートの品質が得られる範囲内でできるだけ小さくする」と規定されている。 細骨材率を小さくすると一般に所要のスランプを得るための単位水量は減るが、がさがさのコンクリートとなり、また、スランプの大きいコンクリートでは、粗骨材とモルタルとが分離しやすくなり、ワーカビリティーが低下する。
一方.細骨材率を大きくすると所要のスランプを得るための単位水量を多く必要とし、流動性の悪いコンクリートとなる。このため、レディーミクストコンクリート工場では、所要のワーカビリティーが得られる範囲内で単位水量が最小になるように試験により最適な細骨材率を定めている。
⑥ 混和材料
1) 混和剤の使用量
AE剤については、所定の空気量が得られるようにその使用量を定める。
AE減水剤については、セメントに対する定められた質量比等の範囲内で使用量を定め、空気量については、空気量調整剤 (AE剤)で所定の空気量が得られるように調整する。
高性能AE減水剤については、セメントに対する定められた質量比等の範囲内で単位水量及びスランプが得られるように使用量を定める。また、空気量については、空気量調整剤(AE剤)で所定の空気量が得られるように調整する。
2)良質なフライアッシュは球形をしており、ボールベアリング効果により、ポンプの圧送性を改善する。普通ポルトランドセメントを用いたコンクリートで圧送が困難な場合、フライアッシュⅡ種又はⅣ種を外割りで混合することができる( 6.3.1(d)(8)(ⅵ) 参照)。
なお、フライアッシュの種類については、平成22年版「標仕」までは、I種又はⅡ種であったが、平成 25年版「標仕」では、Ⅱ種又は Ⅳ種に変更されているので、フライアッシュの混合使用が行われる場合には、受注者等に調合計画表等を提出させて確認するとよい。
3) 普通ポルトランドセメントを用いたコンクリートで水セメント比の制限等により、強度上必要なセメント量を超える場合は、その部分をセメント全量の10%(質量比)の範囲でフライアッシュⅠ種又はⅡ種に置き換えることにより、単位水量の低下、単位セメント量の低下等が図られ、乾燥収縮等を改善することができる (6.3.1(d)(8)(ⅵ) ➀ 参照)。
また、「標仕」 では記載されていないが、高炉スラグ微粉末を適量混合することにより、水和熱の抑制、アルカリ骨材反応の抑制、硫酸塩や海水に対する化学抵抗性の向上、水密性の向上等が期待できる。
なお、普通ポルトランドセメントと置換できるフライアッシュの種類については、平成22年版「標仕」まではⅡ種だけであったが、平成25年版「標仕」では、新たに I種も追加されている。
4) 上記 1)~3)以外で混和材料として多く用いられるものには流動化剤、膨張材、防錆剤等があるがその使用方法使用量についてはコンクリートの種類や使用目的によって異なるので、使用が特記された場合は、コンクリートの所定の性能が得られるよう試し線り及び信頼できる資料を受注者等に提出させて確認することが重要である。
⑦ 塩化物量
コンクリートは、通常pH=12.5~13程度の強アルカリ性を呈し、その中に埋め込まれた鉄筋の表面は薄い酸化皮膜で覆われ、不働態化して腐食から保設されている。
しかし、大気中の炭醗ガスやその他の酸性物質の浸透によって徐々にアルカリ性が失われ、中性化が鉄筋の位置まで進行すると鉄筋の腐食に対する保澁作用を失い、更に、水分と酸索が供給されると鉄筋は腐食し始める。
コンクリート中に一定量以上の塩化物が存在すると、塩化物イオンの作用によってコンクリートの中性化が進行していなくても、不働態皮膜が破壊され、鉄筋は腐食し始める。
これらの理由から、「標仕」ではコンクリートに含まれる塩化物の値に制限が設けられ、塩化物イオン量で 0.30kg/m3以下と規定されている。
なお、塩化物イオン量が0.30kg/m3を超えることがやむを得ないと判断した場合は、設計担当者と打合せのうえ、受注者等に次の基準に従った処置の方法を提案させ、「標仕」1.1.8 による協議に基づいて処置する必要がある。
1) コンクリート中に含まれる塩化物含有量の基準
鉄筋コンクリート造等建築物の構造耐力上主要な部分に用いられるコンクリートに含まれる塩化物量(塩化物イオン(Cl-)換算)は、原則として 0.30 kg/m3以下とし、やむを得ず塩化物量が 0.30 kg/m3を超え 0.60 kg/m3 以下のコンクリートを使用する場合は、次のイ)からニ)までの条件を満たすものとする。
イ)水セメント比は、55%以下とする。
ロ)AE減水剤又は高性能AE減水剤を使用し、スランプは 18cm以下(流動化コンクリートではベースコンクリートのスランプは15cm以下、流動化後のコンクリートのスランプは21cm以下) とする。
ハ)適切な防錆剤を使用する。
ニ)スラブの下端の鉄筋のかぶり厚さを3cm以上とする。
2)離島等で海砂以外の骨材の入手及び除塩用水の確保が落しく困難であり、塩化物量が 0.60kg/m33を超える場合においては、有効な防錆処理が施された鉄筋の使用等による防錆対策を講ずる。
3) 塩化物量の測定は、「標仕」表6.9.1による。
⑧ アルカリ骨材反応
1) アルカリ骨材反応とは、反応性シリカを含む骨材とセメント等に含まれる Na+、K+ のアルカリ金属イオンが、水の存在下で反応してアルカリけい酸塩を生成し、これが膨張してコンクリートにひび割れ、ポップアウト等を生じさせる現象をいう。
2) アルカリ骨材反応は、この反応にかかわる鉱物の種類によって、アルカリシリカ反応とアルカリ炭酸塩反応とがあり、わが国で問題となっているのは主としてアルカリシリカ反応である。
3) この反応性をもつ鉱物としてはオパール、クリストバライト、トリジマイト、火山ガラス、玉髄、石英等があり、反応性シリカ鉱物を含む岩石としては輝石安山岩、チャート等がある。
4)アルカリ骨材反応は、一般に①反応性骨材、②高いアルカリ量、③十分な湿度の 3条件がそろった場合にコンクリートに被害を生じさせるとされている。
5)アルカリ骨材反応の抑制対策として 次のような方法が考えられる。
イ)反応性の骨材を使用しない。
ロ)コンクリート中のアルカリ総量を低減する。
ハ)アルカリ骨材反応に対して抑制効果のある混合セメントを使用する。
6) 以上のことから、「標仕」ではコンクリートはアルカリ骨材反応を生じるおそれのないものとしている。
⑨ 計画調合の決定
1) 計画調合は、試し練りによってそのコンクリートの性能を確認して定めることを原則としているが、I 類コンクリートを使用する場合は、試し練りは、省略してもよいとしている。
2) 試し練りにおいて、計画スランプ、計画空気量、調合強度(標準養生した材齢28日の圧縮強度 )、その他コンクリートの温度や塩化物量、単位容積質量等を確認する。
なお、試し錬りの計画スランプ、計画空気量については、レディーミクストコンクリートの練混ぜから荷卸し地点までのロスを考慮した目標値であることに注意する。
また、運搬によるスランプロスや空気量ロスは、練混ぜから荷卸し地点までの距離、コンクリートのスランプ、外気温、調合条件等によって相違があるので、レディーミクストコンクリート工場の社内規格を参考にするとよい。
3) 計画調合の表し方
コンクリートの計画調合は、JIS A 5308(レディーミクストコンクリート)の表8[レディーミクストコンクリート配合計画書]により表す。
4) レディーミクストコンクリート工場では I類コンクリートについては、使用する材料で調合設計を標準化している。レディーミクストコンクリート工場における計画調合の定め方の一例を図6.3.8 に示す。
図6.3.8_レディーミクストコンクリート工場における計画調合の求め方の例.jpg
図 6.3.8 レディーミクストコンクリート工場における計画調合の求め方の例

6章コンクリート工事 2節 種類及び品質

第6章 コンクリート工事
2 節 コンクリートの種類及び品質
6.2.1 コンクリートの種類
(a) 平22年版「標仕」までは、使用骨材によってコンクリートの種類分けを行っていたが、近年、スラグ骨材等を含め密度の異なる各種の骨材が開発・使用され、特に細骨材は混合して使用される場合もあることから、平成25年版「標仕」では、気乾単位容積質量でコンクリートの種類を分類し、おおむね気乾単位容和質量が 2.1〜2.5 t/m3 の普通コンクリートと、より気乾単位容積質量の小さい軽量コンクリートの 2種類とされた。
(b) 寒中コンクリート、暑中コンクリート、マスコンクリート、無筋コンクリート及び流動化コンクリートは、使用材料、施工時期・施工方法・施工場所等の施工条件、要求性能等によって 10節までとは異なる品質管理が必要なため「特別仕様のコンクリート」として 11節から 15節に別記されている。
(c) 平成16年 6月に工業標準化法が改正され、平成 17年 10月 1日からJISマーク表示制度は、国による認定制度から登録認証機関による製品認証制度となった。これによって、JIS A 5308(レディーミクストコンクリ ート)もこれまでの「工場認定」 から「製品認証」へと変更された。
「標仕」でも平成22年版の改定以降、I 類コンクリートは.JIS Q1001(適合性評価一日本工業規格への適合性の認証一 一般認証指針)及び JIS Q1011 (適合性評価一日本工業規格への適合性の認証一分野別認証指針(レディーミクストコンクリート))に基づき、JIS A 5308への適合を認証されたコンクリー ト II 類コンクリートは I 類以外のJIS A 5308に適合したコンクリートとされている。
「標仕」では、従来より、建築工事には特別な場合を除き、 JIS A 5308 に適合するレディーミクストコンクリートで対応できると考えられている。そのうえで、適合を認証された I 類コンクリートを使用することを原則としているが、山間部、離島等で運搬可能時間の距離内にJISマーク表示認証を取得した製品(以下、この章では「JISマーク表示認証製品」という。)を製造する工場(以下、この章では 「 JISマーク表示認証工場 」 という 。) がない場合でも.II 類コンクリートであれば、基礎、主要構造部等建築基準法第37条に規定する部分に適用できると考えてよい。

なお、建築基準法第 37条の指定建築材料が適合すべき規格及び品質に関する技術的基準を定めた平成12年建設省告示第1446号の一部が平成28年6月13日に改正(国土交通省告示第814号)され、建築物の基礎や主要構造部等に使用するコンクリートが適合すべき日本工業規格は、JIS A5308(回収骨材を使用するものを除く)に改められた。
よって、従来、国土交通大臣の認定で必要であったエコセメントや再生骨材H を使用したコンクリートについても、平成28年版「標仕」からは、一部の材料の組合せや用途を除いて特記せずに使用できることとなった。但し、回収骨材を使用したコンクリートを使用する場合には従来通り国土交通大臣の認定を取得した上で、「標仕」6.2.1(d)に基づいて特記しなければならない。参考に、上記国土交通省告示第814号と同時に国土交通省住宅局建築指導課長から発出された、技術的助言 国住指第770号 平成28年 6月13日「建築物の基礎、主要構造部等に使用する建築材料並びにこれらの建築材料が適合すべき日本工業規格又は日本農林規格及び品質に関する技術的基準を定める件の改正について」の抜粋を下記に示す。
建築物の基礎、主要構造部等に使用する建築材料並びにこれらの建築材料が適合すべき日本工業規格又は日本農林規格及び品質に関する技術的基準を定める件の改正について(技術的助言)
(国住指第770号 平成28年 6月13日)
建築基準法第37条の規定に基づく標記基準については、平成28年6月23日付け国土交通省告示第814号として別添のとおり公布されたので通知する。
中略

2. 改正概要
レディーミクストコンクリートに関する JIS A 5308が2014年に改正されたことを踏まえ、指定建築材料であるコンクリートが適合すべき日本工業規格として、JIS A5308(レディーミクストコンクリート)- 2014を定めることとする。ただし、当該 JISのうち、「回収骨材を使用するもの」については、建築材料として使用する場合における管理方法等の知見が得られたいないため、使用できないこととする。

2014年の JIS A 5308 のレディーミクストコンクリートの種類を表6.2.1 に示す。
表6.2.1 JIS A 5308 : (2019改正)によるレディーミクストコンクリートの種類
表6.2.1_JISA5308レディーミクストコンクリートの種類(2019改正).jpg
(注)荷卸し地点での値であり、50cm及び60cmがスランプフローの値である。
(d)「標仕」では、建築基準法第 37条第二号による国土交通大臣認定のコンクリートは,設計担当者が特記することとしているので、特記された場合には、認定条件等を十分に確認して使用することになる。
6.2.2 コンクリートの強度
(a)「標仕」ではコンクリートの設計基準強度は、36N/mm2 以下(軽量コンクリートでは 27N/mm2 以下)としている。
なお 従来、軽量コンクリートの設計基準強度は 27N/mm2 未満であったが、(一社)日本建築学会「JASS5 鉄筋コンクリート工事」の軽量コンクリート2種の規定に合わせ、平成 25年版「標仕」では 27 N/mm2以下に変更された。
高強度化が流れではあるが、4〜5階建て、数千m2 程度のRC造建築物では高強度コンクリートを使用することはほとんどない。
(b) 使用するコンクリートの強度とは、使用するコンクリートが本来保有していると考えられるポテンシャルの圧縮強度のことであり、荷卸し地点でコンクリート試料を採取し、標準養生した供試体の材齢 28日の圧縮強度で表される。 ポテンシャルの圧縮強度は、構造体コンクリートの強度が設計基禅強度を満足するように、設計基準強度に構造体コンクリートの強度と標準養生した供試体強度との差を考慮した値(構造体強度補正値(S):6.3.2(1)(ⅱ)を参照)を加えた調合管理強度以上でなければならない。
(c) 構造体コンクリートとは、型枠内に打ち込まれて養生され、硬化して構造体あるいは部材を形成しているコンクリートのことである。構造体コンクリートの強度は、初期に十分な湿潤養生が施されれば、材齢28日以降も長期にわたって強度が増進し、材齢 91日においても強度増進は続き、停止することはない。 しかし、コンクリート工事においては適切な材齢を定め、その材齢において設計基準強度を満足するように定める必要がある。建築基準法施行令第74条第1項第二号に基づき、昭和56年建設省告示第1102号の第1第二号では、コンクリートの強度は、コンクリートから切り取ったコア供試体について強度試験を行った場合に、材齢91日において設計基誰強度以上であることと定めている。「標仕」が定める構造体コンクリートの強度の基準となる材齢91日は、この告示の規定を適用したものである。
一方、実際のコンクリート工事において構造体コンクリートの強度をコア供試体で試験することは、構造体に損傷を与え、かつ、修復が必要となるため困難である。このため、一般には工事現場で使用するコンクリートから試料を採取し、構造体コンクリートと同じような強度発現をすると考えられる方法で養生した供試体の圧縮強度から構造体コンクリートの強度を推定し、品質管理を行っている。上記告示第1102号の第1第一号では、コンクリートの強度は、現場水中養生を行った供試体について強度試験を行った場合に、材齢 28日において設計基準がよく強度以上であることと定めている。「標仕」においても、この告示の規定に基づき構造体コンクリートの強度推定の管理材齢の一つとして28日を規定している。
なお、平成19年版「標仕」では、調合管理強度に相当する値は、材齢 28日を基準に、設計基準強度(Fc)、構造体コンクリートと供試体強度との差(△ F = 3 N/mm2 )、気温によるコンクリート強度の補正値( T ) を考慮して(Fc 十 △F+T )としていたが、平成22年版「標仕 」では、調合管理強度は、材齢 91日を基準に、△ FとTに代わり構造体強度補正値(S:「標仕」表6.3.2 を参照)を取り入れ( Fc+S )に改められている。
構造体コンクリートの強度とは、構造体あるいは部材そのものの強度ではなく、構造体あるいは部材の中に直径と高さの比が 1:2 の円柱を考え、仮にその円柱を圧縮試験したとするときに得られる強度であり、一般には構造体あるいは部材から切り取ったコア供試体の圧縮強度がそれに近いと考えられている。しかし、実際のコンクリート工事において、構造体コンクリートの強度をコア供試体で試験するのは困難である。このため、工事現場で採取した供試体を、構造体コンクリートと同じような強度発現をすると考えられる方法で養生した供試体の圧縮強度で表すこととした。
構造体コンクリートの強度に関する調査・研究によって、現場水中養生した供試体の圧縮強度は、材齢28日のコア供試体の圧縮強度より大きく、材齢91日のコア供試体の圧縮強度と同等かやや小さいことが分かってきた。また、現場封かん養生した供試体の圧縮強度は、現場水中養生した供試体の圧縮強度よりやや低いことも分かってきた。このため、「標仕」では現場水中義生した供試体あるいは現場封かん養生した供試体の圧縮強度を基に構造体コンクリートの強度を推定することとした。
(d)使用するコンクリートの強度及び構造体コンクリート強度の推定値の判定は、9節の6.9.4 及び 6.9.5 によって行う。6.2.2(b)でも記したように、使用するコンクリートとは.工事に用いるために工事現場に搬入したコンクリートのことであり、その強度は、コンクリートが本来保有していると考えられるポテンシャルの圧縮強度のことである。したがって、使用するコンクリートの強度は、荷卸し地点で採取して標準養生した供試体の材齢28日の圧縮強度で表すこととし、その値は調合管理強度以上でなければならず、かつ、JIS A5308(レディーミクストコンクリート)の呼び強度の強度値を満足しなければならない。
6.2.3 気乾単位容積質量
(a) コンクリートの気乾単位容積質量は、使用する骨材の密度や調合によって異なり、構造計算で固定荷重を算定するときに、鉄筋コンクリートの質量を求めるために用いる値である。平成25年版「標仕」から、従来の使用骨材の種類による区分から、新たにコンクリートの気乾単位容積質量による区分に変更され、そのための標準的な判断基準として、JASS 5 の規定値を参考に数値が示された。
(b) 軽量コンクリートの気乾単位容積質量は、別途「標仕 」10節で1種、2種の種類ごとに標準的な値の範囲が示されている。
6.2.4 ワーカビリティー及びスランプ
ワーカビリティーとスランプの関連等について次に示す。
(1) ワーカビリティーは、打込み場所並びに打込み方法及び締固め方法に応じて、型枠内並びに鉄筋及び鉄骨周囲に密実に打ち込むことができ、かつ、 粗骨材の分離が少ないものとする。また、スランプの所要値は、特記がなければ、基礎、基礎梁、土間スラブでは15cm又は 18cm、その他の部材では 18cmとする。
(2) ワーカビリティーは、運搬、打込み、締固め及び仕上げのフレッシュコンクリートの移動・変形を伴う作業の容易さとそれらの作業によってもコンクリートの均一性が失われないような総合的な性質であり、フレッシュコンクリートの流動性の程度を表すスランプとは別の概念である。
(3) 作業の容易さからいえば、スランプが大きく流動性が高いほうがワーカビリティーが良いといえるが、スランプが過大になると粗骨材が分離しやすくなるとともにブリーディング量が大きくなり、コンクリートの均一性が失われる。そこで、単位セメント量や細骨材率を大きくするとフレッシュコンクリートの粘性が大きくなり、粗骨材の分離は生じにくくなる。
(4) スランプを大きくし、かつ、単位セメント量や細骨材率を大きくすれば、見かけ上はワーカビリティー の良いコンクリートが得られる。 しかし 単位水量や単位セメント量が過大になると乾燥収縮率が大きくなってひび割れが生じやすくなるとともにセメントペーストやモルタル分の多いコンクリートとなって、打上りコンクリートの表面の品質が悪くなる。
(5) このため、作業の容易さだけでワーカビリティーを評価するのではなく、ブリーディングや骨材の分離ができるだけ少なくなるようにするという条件も考慮しなければならない。
(6) スランプは、打込み時のフレッシュコンクリートに要求される直要な品質項目の一つであるが、ここでいう所要スランプとは、荷卸し地点でのスランプである。所要スランプ18cmというのは、許容差を含めて考えればよく、その値は JIS A 5308(レディーミクストコンクリート)の規定によれば ± 2.5cmである 。
スランプフローの基準
JIS A5308 2019年改正により
普通コンクリートにおけるスランプフローは
 45±7.5cm,
 50±7.5cm,
 55±7.5cm,
 60±10cm
の4種類となっている。
6.2.5 構造体コンクリートの仕上り
(a) コンクリート部材の位置及び断面寸法の許容差
(1) コンクリート部材の位置及び断面寸法は,所定の許容差の範囲内になければならないが、これは次の理由による。
(ⅰ) 構造体としての耐力及び耐久性の確保
(ⅱ) 仕上げ二次部材又は設備等の納まり上の要求
(ⅲ) 美観上の要求
(2)部材の位置及び断面寸法の測定は,一般的には次のように行う。
特記された部材又はサンプリングした部材について、基準墨からスケール等を用いて測定する。 測定部分は両端及び中央の 3箇所程度行う。
柱・梁等は直接測定できることが多く問題は少ないが、床・壁等の断面寸法は、両側から測定して計算で求めると測定誤差がきく大なることがある 。 そこで、開口部等を利用して直接測定する。
むやみに測定項目や測定数を増やすことは、測定費用や時間を要し本来の目的から逸脱することになる。コンクリート部材の位置及び断面寸法は、型枠の変形等がなければ、型枠により決まるものであり、補修も困難であることから、コンクリート打込み前の型枠の設計・掛出し・組立等を確実に行うことが必要である。 コンクリート打込み後は型枠の変形が生じたと見られる部分等について、確認のために測定する。
(3) (1)及び(2)に基づいて各部材の位置及び断面寸法を測定し、その結果、位置及び断面寸法の精度が「標仕」表6.2.3 の許容値を満足しない場合は、「標仕」6.9.6 に従って監督職員に報告するとともに適切な処置等を講じなければならない。
(b) コンクリート表面の仕上り状態
(1) せき板に接するコンクリートの仕上り状態は特記によるが、コンクリートの打放し仕上げの場合は、「標仕」表6.2.4 の種別に応じた「表面の仕上り程度」を目安とする。コンクリートの仕上り状態を良好にするには、不陸を少なくするために変形量の少ない型枠設計を行い、コンクリート打込みの際は、目違い等が生じないようにコンクリートの締固めを行うことが重要である 。
(2) コンクリートの仕上りの平たんさは、せき板に接する面は型枠の変形等により、せき板に接しない床上面等は左官の均し精度により決まる。
平たんさの測定方法には、JASS5 で定められた JASS 5 T-604 (コンクリートの仕上がりの平たんさの試験方法)があるが、試験用器具が特殊で取扱い方法も難しいため、一般的には下げ振り、トランシット、レベル、水糸、スケール等を使用してコンクリート面の最大、最小を測定する方法等で行われている。
「標仕」表6.2.5 の平たんさの標準値は,仕上げの種類だけでなく、建物の規模や仕上り面に要求される見ばえ等によっても異なるので、適切な値を品質計画で提案させ、検討するとよい。
なお、25年版「標仕」では、表6.2.5 の対象となる柱、梁、壁の種類に「接着剤による陶磁器質タイル張り」が追加され、これに伴い従来のタイル工法は「セメントモルタルによる陶磁器質タイル張り」と名称が変更された。床についてもフリーアクセスフロアが追加された。 フリーアクセスフロアには,支柱調整式(下地床の不陸に伴う高さを調整する機能を有するも)のと置敷式(高さを調整する機能がなく、高さは下地床の精度に従うもの)の2 種類があり、支柱調整式は ±10〜15mm 程度の調整代があるため、従来からの「二重床」に含め、置敷式は新たに「フリーアクセスフロア(置敷式)」として追加された。

6章コンクリート工事 4節発注、製造及び運搬

第6章 コンクリート工事
4 節 レディーミクストコンクリートの発注、製造及び運搬
6.4.1 レディーミクストコンクリート製造工場の選定
(a) 工事開始前に、「標仕」 で規定されている所定の品質が得られるように工事現場周辺のレディーミクストコンクリート工場を調壺して (b)から( f )の事項に適合するものであることを確認する。
(b) レディーミクストコンクリートの製造者の業界では、一般に地域ごとの協同組合による共同販光方式又は直接販売方式が取られ、協同組合から割り当てられた一工場又は複数の工場から工事現場にコンクリートが供給されるようになっている。このような供給方式の場合、同一打込み工区に同時に複数の工場よりコンクリートが供給されるとそれぞれの工場の品質責任の所在を明確化することが困難となるので、同一打込み工区への複数工場からの供給が行われないようにする。 複数工場による協同納入を避けることができない場合は、打込み区画を区分し、それぞれの納入工場に振り分けて、貢任の所在を明確にすることが重要である。
(c) レディーミクストコンクリートは、運搬時間によって品質が変化することもあるので、運搬時間はなるべく短い方がよい。したがって、JIS A 5308(レディーミクストコンクリート)の 8.4[運搬]及び「標仕」 6.6.2 で定められた時間の限度内にコンクリートが打ち込めるよう、工事現場内の運搬方法及び運搬時間並びに工場の製造能力、運搬能力等を考慮した工場であることを確認することが重要である。
(d) レディーミクストコンクリートの品質は、工場の技術者の技術水準に左右される。
「標仕」6 .4.1 (1)及び (2)でいう施工管理技術者とは、(公社)日本コンクリート工学会がコンクリートに関して豊富な知識と優れた技術水準を有する者と認定したコンクリート主任技士、コンクリート技士若しくはコンクリート診断士又は一級建築施工管理技士、ー級建築士等が該当する。また、レディーミクストコンクリート工場の選定は監督職員の承諾事項(「標仕」6.4.1)とされているので、承諾に当たっては品質確保及び資格運用等を適切に行っている工場であることを確認する必要がある。
レディーミクストコンクリート工場の品質管理状況に関しては、産・学・官で構成される「全国生コンクリート品質管理監査会議」が JIS Q1011(適合性評価 日本工業規格への適合性の認証 分野別認証指針(レディーミクストコンクリート))の規定に、ISO 9001(品質マネジメントシステムー 要求事項) の一部規定及び管理技術者の有無等の要求事項を加えた「全国統一品質管理監査基準」を策定し、毎年各工場の立入監査を行い、この基準に適合した工場に○適マークを交付しているので、工場の選定に必要な品質確保の確認には、これらの結果を参考にするとよい(6.5.1(a)参照)。
(e) JIS マーク表示認証工場の中には、表6.2.1よりも狭い範囲の組合せで JISマーク表示の認証を受けている場合もあるので、JISマーク表示認証製品の範囲を確認する必要がある。
(f) JIS マーク表示認証工場が工事現場近くにない場合は、JIS A 5308 の規定とJIS Q 1011を参考にして、その工場の製品規格、使用材料、製造工程管理・設備、製品の品買管理状態等を調査し、「標仕」 2節に規定される品質のコンクリートが製造できると認められる工場であることを確認する必要がある。
6.4.2 レディーミクストコンクリートの発注
(a) I類コンクリートの発注に当たっては、表 6.2.1 に示す「レディーミクストコンクリートの種類」からコンクリートの種類、粗骨材の最大寸法、スランプ及び呼び強度の組合せを指定させるほか、表6.4.1 に示す a)から d)の事項とともに、必要に応じて e)から q)の事項を生産者と協談のうえ、指定させる。ただし、a) から h) については、JIS A 5308で規定している範囲とする。
表 6.4.l 指定及び協議事項 (JIS A 5308:201I)
a ) セメントの種類
b ) 骨材の種類
c ) 粗骨材の最大寸法
d ) アルカリシリカ反応抑制対策の方法
e ) 骨材のアルカリシリカ反応性による区分
f ) 呼ぴ強度が36を超える場合は、水の区分
g ) 混和材料の種類及び使用量
h ) 品質の項で定める塩化物含有量の上限値と異なる場合はその上限値
i ) 呼ぴ強度を保証する材齢
J ) 品質の項で定める空気量と異なる場合は、その値
k ) 軽量コンクリートの場合は、軽量コンクリートの単位容積質量
1 ) コンクリートの最高又は最低温度
m ) 水セメント比の目標値の上限
n ) 単位水量の目標値の上限
o ) 単位セメント量の目標値下限又は目標値の上限
p ) 流動化コンクリートの場合は、流動化する前のレィデーミクストコンクリートからのスランプの増大量
q ) その他必要な事項
(b) Ⅱ類 コンクリートの発注に当たっても、I類コンクリートと同様に必要項目を生産者と協議のうえ、指定させる。
(c) 錬混ぜ水としてスラッジ水を使用する場合は、スラッジ固形分率(レディーミクストコンクリートの配合における、単位セメント量に対するスラッジ固形分の質量の割合)が 3%を超えないように目標スラッジ固形分率が設定され、パッチ濃度調整方法又は連続濃度測定方法でスラッジ固形分率が適切に管理されていることを受注者等に確認させ、その結果を報告させることが重要である。
なお、スラッジ固形分率を 1%未満で使用する場合、生産者が、JIS A 5308 の表8[レディーミクストコンクリート配合計画書 ]の目標スラッジ固形分率の欄に、”1 %未満”と記載する。また、この場合、生産者が練混ぜ水の全量にスラッジ水を使用し、かつ.濃度の管理期間ごとに1 %未満となるよう適切に管理されていることを受注者等に確認させ、その結果を報告させることが重要である。
(d) 呼び強度は、呼び強度の強度値が調合管理強度(設計基準強度(Fc)+構造体強度補正値(S))以上で、かつ、コンクリートの種類に応じた単位セメント量の最小又は最大値、水セメント比の上限値を満足するよう指定させる。
(e)施工に先立ち、レディーミクストコンクリート工場の配合計画書とともに、製造に用いる材料、調合設計の基礎となる資料及び計算書等を受注者等から提出させ、検討、確認する必要がある。
なお、レディーミクストコンクリート工場は、調合設計の基礎となる資料として、水セメント比と圧縮強度の関係式、呼び強度ごとの標準偏差、単位水量・水セメント比・スランプの関係、単位粗骨材かさ容積・水セメント比・スランプの関係、気温・運搬時間・スランプロス・空気量ロスとの関係、使用材料の変動による調合修正の方法 、コンクリートの練混ぜ量・練混ぜ時間との関係等コンクリートの調合、製造の基本となるデータ類を保有しているので必要に応じてこれらの内から当該現場で問題となりそうな項目に関する資料を提出させるとよい。
6.4.3 運 搬
(a) JIS A5308 の 8.4[運搬]では、運搬時間は、生産者が練混ぜを開始してから運搬車が荷卸し地点に到着するまでの時間とし、その時間は、1.5時間以内としている。ただし、購入者(受注者等)と生産者とが協談のうえ、運搬時間の限度を変更することができることになっている。一方、「標仕」 6.6.2 では.コンクリートの練混ぜから打込み終了までの時間の限度は、厳しくなる場合もある。コンクリートの運搬に当たっては、これらの二つの規定を満足するように適切な施工計画を立てさせる。
(b) トラックアジテータからコンクリートの荷卸しを行うに際してはその直前にトラックアジテータを高速回転させ、ミキサー内のコンクリートを均ーにしたのち、コンクリートを排出する。 特に運搬距離が長い場合には、高速回転させる時間を少し長くするとよい。
なお、市街地でのトラックアジテータの高速回転は騒音の問題が発生するので、工事開始前に住民の理解を得ておく必要がある。