6章コンクリート工事 12節暑中コンクリート

第6章 コンクリート工事
12 節 暑中コンクリート
6.12.1 適用範囲
(a) 暑中コンクリートは、日平均気温の平年値が 25 ℃を超える期間が適用期間となっている。日平均気温の平年値とは、過去30年間の日平均気温をKZフィルター(単純移動平均を数回繰り返す方法)を用いて、9日間の移動平均を 3回行った値である。例えば、東京では 7月13日から 9月 8日までが適用範囲となる。
(b) 暑中コンクリートは、次のような問題を生じやすい。
①単位水量の増加・・・・・・強度低下
②スランプ低下率の増大・・・ポンプ圧送困難、ワーカビリティー低下
③凝結、硬化の促進・・・・・打継ぎ不良、仕上げ不良
④急激な表面乾燥・・・・・・表面ひび割れの発生
⑤高温なコンクリート・・・・ひび割れの発生
コンクリートの温度が高い時は反応速度が早く凝結、硬化の進み方が早くなる。例えば、コンクリートの温度が 30℃になると 20℃の場合に比べ、輸送時間 60分のときでスランプが 1~ 2cm低下する。また、同じスランプを得るのに単位水量が 4~7kg/m3 増加する。
詳細については (一社)日本建築学会「暑中コンクリートの施工指針・同解説」を参考にするとよい。
6.12.2 材料及び調合
(a) セメントの温度が 8℃高いと、コンクリート温度は約1℃高くなる。セメントの温度が高い場合は、入荷後セメントサイロ内に一定期間放置して温度を下げるなどの対策が望まれるが、そのような対策をとるのは困難な場合が多く、骨材又は水を冷やす方が現実的である。
(b) 骨材は、コンクリート1m3 中に占める使用料が最も多いので、骨材温度はコンクリートの練上がり温度に大きく影響し、骨材温度が2℃高いとコンクリート温度は約1℃高くなる。 骨材の温度上昇を防ぐには、直射日光を当てないように屋根を設けたり、骨材に散水するなどの措置を講じるのがよい。ただし、細骨材に散水しても冷却効果は少なく、また、表面水の管理が難しくなるため、注意が必要である。
(c) 水は比熱が大きく、コンクリートの線上がり温度に及ぼす影響は、使用量の割には大きく、水の温度が 4℃高いとコンクリート温度は約1℃高くなる。したがって、なるべく低温のものを使用するのがよい。
(d) 6.12.1で記述したように凝結が早くなるので、凝結時間を遅延するためにAE減水剤の遅延形I種又は高性能AE減水剤遅延形I種を使用するのがよい (6.3.1(d)(3)参照)。この混入は、コンクリートのワーカビリティーを保つのに非常に効果がある。
(e) 高温下で養生されたコンクリートは、20℃で養生されたコンクリートよりも強度発現が停滞する傾向にあることから 「標仕」では構造体強度補正値(S)を特記により定めるとしている。特記のない場合は、上述の理由から、構造体強度補正値を 6 N/mm2 とすることとしている。
6.12.3 製造及び打込み
(a) 6.12.1(b)の弊害を抑制するため、「標仕」では、荷卸し時のコンクリート温度を、原則として 35℃以下とすることとしている。しかし、最近では各地域の最高温度が高くなる傾向にあり、盛夏期では、使用材料の温度制御等の対策では 35℃を超えることが避けられない場合も予想される。そのような場合を想定し、材料・調合、打重ね時間、養生方法・期間等についてあらかじめ検討し、対策を講じておくのがよい。
(b) せき板及び打継ぎ面が乾燥していると、あとから打ち込まれるコンクリートから水分がせき板及び打継ぎ面に吸収されるため好ましくない。ただし、散水後にせき板及び打継ぎ面に水がたまっているとコンクリートの品質が低下し、特に打継ぎ面に水がたまっていると打継ぎ部の一体性が損なわれるため、たまった水は高圧空気等によって取り除く。
(c) 輸送管が直射日光の当たるところに設置されると、配管の段取り替えや運搬車の待ち時間等で輸送管内のコンクリートの温度が上昇し、コンクリートのワーカビリティーが低下して閉塞やコールドジョイント等のトラブルが発生しやすい。したがって、輸送管等の運搬機器は、できるだけ直射日光を受けない場所に設置することが望ましい。 直射日光を受けるような場合は、輸送管をぬれたシート等で覆い、コンクリート温度の上昇を防ぐようにする。
(d) 「標仕」では、コンクリートの練混ぜを開始してから90分以内に打込みを終了するように定められているがそのためにはコンクリート運搬車の現場到着後の待ち時間をできるだけ短くすることが必要である。
(e) 打ち込まれるコンクリートが接する箇所の温度が高いと、これらに接したコンクリートの表層部は、急激に水分が吸収されるなどして、一体性や付着強度に悪影響を及ぼすことになる。したがって、打ち込まれるコンクリートが接する箇所は、表面温度が上昇しないように散水あるいは直射日光を防ぐなどの対策を講じる必要がある。ただし、散水によって冷却する場合は、型枠内に水がたまらないようにする必要がある。
(f) 暑中環境における打込みでは.コンクリートの凝結が急速に進み、コールドジョイントが発生しやすくなる。このため、打込み継続中における打重ね時間間隔の限度内にコンクリートが打ち込めるように、1回の打込み量、打込み区画及び打込み順序を考慮した打込み計画を立て、これに基づいて施工を行う。
6.12.4    養 生
(a) 表面からの水分の蒸発を防ぐことが大切であり、打ち上がったコンクリートの浮き水の状況や風速等を考慮し、急激な乾燥のおそれがある場合は散水を行う。打込み後は.6.7.2 に準じて湿潤養生を行う。
(b) コンクリート上面ではブリーディング水が消失した時期以降にコンクリートが乾燥の影響を受けるので、湿潤養生はこの時期から開始するのがよい。せき板に接している面は、封かん養生に相当する程度の養生条件が保たれているものと考えられるので。養生は脱型直後から開始すればよい。
(c) 湿潤養生終了後に、直射日光や風等によって急激にコンクリートを乾燥させるとひび割れが発生しやすくなる。湿潤養生後は、養生シート等をできる限り長く存置させて、急激な乾燥を防止するのがよい。

6章コンクリート工事 13節マスコンクリート

第6章 コンクリート工事
13 節 マスコンクリート
6.13.1 一般事項
一般に、断面寸法の大きい部材に打ち込まれたコンクリートは、硬化中にセメントの水和熱が蓄積され内部温度が上昇する。このため、コンクリート部材の表面と内部に温度差が生じたり、また、全体の温度が降下するときの収縮変形が拘束されたりして、ひび割れが生じるなどの問題が起きやすい。また、1回に打ち込むコンクリートの量が大量になる場合が多いので、入念な打込み計画のもとに施工しないとコールドジョイントが生じやすくなる。コールドジョイントが発生しないようにするためには、連続的に打ち込むことが重要である。また、先に打ち込まれ硬化したコンクリートからの拘束をできるだけ小さくするように打込み区画の大きさ、打込み順序・打込み時間間隔を定めることが重要である。
そこで「標仕」では、「部材断面の最小寸法が大きく、かつ、セメントの水和熱による温度上昇で有害なひび割れが入るおそれがある部分のコンクリート」は、マスコンクリートとしてこの節を適用することとしている。
この場合の目安としては、最小断面寸法が壁状部材で800mm以上、マット状部材・柱状部材で 1,000mm以上である。柱状部材では外部拘束が小さいので温度ひび割れが入りにくいが、構造体の強度発現に留意する必要がある。このほかに、設計要求性能のレベル、コンクリート強度、部材形状、拘束の程度、1回に打ち込まれるコンクリー卜量、実績等を考慮して、その適用を定める必要がある。
6.13.2 材料及び調合
(a) 部材の内部温度の上昇は、 他の条件が同じであればセメントの水和熱に比例して増加する。セメントの水和熱の大きさは、セメントの化合物の中でも、C3S(けい酸三カルシウム)、C3A(アルミン酸三カルシウム)の多少によって影響される。したがって、内部温度を低減するためには、できるだけ発熱量の小さいセメントを選定する必要がある。
マスコンクリートには、水和熱の小さい中庸熱ポルトランドセメント、低熱ポルトランドセメント又はフライアッシュセメントB種を用いるのがよい。これらのセメントは地域によっては入手が難しいことがあるので、事前に供給について確認しておくことが必要である。
高炉セメントB種はこれまで「標仕」のマスコンクリートの標準的なセメントであった。 最近の高炉セメントは、高炉スラグの粉末度を高くして強度発現性を改良する領向にあり、発熱速度が速くなるものもあるため、使用に当たっては注意が必要である。
早強ポルトランドセメントは、水和熱が大きいので用いない方がよい。
(b)化学混和剤の中のAE減水剤及び高性能AE減水剤の使用は、単位水量を減少させ、その結果、単位セメント量も少なくなり、温度上昇は小さくなる。特に、AE減水剤遅延形及び高性能AE減水剤遅延形は、セメントの水和反応を抑制し、温度上昇を緩やかにするのでマスコンクリートに適している。
AE減水剤標準形及び高性能AE減水剤標準形を用いる場合は、コンクリートの品質を確保しながら、減水効果が高<、単位セメント量をなるべく少なくできるものを用いるのがよい。
AE減水剤促進形は、セメントの水和反応が促進され、初期の水和熱量を増大させるので、使用してはならない。
混和材を用いる場合は、コンクリート用フライアッシュⅠ 種若しくは Ⅱ 種又はコンクリート用高炉スラグ微粉末の3000若しくは4000を用いる。 ただし、フライアッシュ I 種は粉末度がⅡ 種より大きく、発熱抑制効果がⅡ種より小さいことが指摘されているので、信頼できる資料若しくは事前の試験等により性状を確認してから使用するのがよい。
(c) コンクリートの練上がり温度が高いと、最高温度も高くなり温度ひび割れが入りやすくなるので、使用する材料はなるべく温度の低いものを用いるようにする。骨材は使用量が多く、練上がり温度に及ぼす影響が大きいので、直射日光が当たらないようにしたり、散水をするなどしてなるべく温度が高くならないようにする。ただし、細骨材に散水すると表面水の管理が難しくなるので、避けたほうがよい。
(d) コンクリートの内部温度上昇を小さくするための重要な事項の一つは、単位セメント量を少なくすることである。粗骨材の寸法を大きくしたり、混和材・化学混和剤を活用するなどの使用材料上の配慮を行うとともに、次のようなコンクリート調合上の配慮が必要になる。
(1)必要以上に調合強度を高くしない。
(2)できるだけ低スランプとする。
(3)必要に応じ流動化剤を有効に使用する。
なお、詳しい内容は、JASS 5 21節[マスコンクリート]を参照するとよい。
(e) 構造体強度補正値(S)は、基本的には一般のコンクリートと同じであるが、中庸熱ポルトランドセメント及び低熱ポルトランドセメントを用いる場合、暑中期間における補正値は 6 N/mm2 ではなく、3 N/mm2でよいことになっている。
6.13.3 製 造
荷卸し時のコンクリート温度が高いほど内部温度上昇は速く進み.最高温度が高くなり.温度降下速度も大きくなる。また、大量のコンクリートを長時間にわたって打ち込む場合、荷卸し時のコンクリート温度が高いと、セメントの水和熱による温度上昇も加わって凝結が速くなり、コールドジョイント等の問題が生じやすい。このため、「標仕」では.荷卸し時のコンクリートの温度を35℃以下と規定している。
6.13.4 養 生
コンクリートの内部温度をできるだけ低くするのが、マスコンクリートの施工の最も大切なことであるが、内部温度を低くする目的で、コンクリート表面を冷水等で冷やしても、マスコンクリートの場合は主に表面部分の冷却のみにとどまり、内部の温度上昇を低くするのにはあまり効果がなく、かえって内部と表面部の温度差を大きくし、ひび割れを誘発する場合が多い。マスコンクリートのひび割れ防止のためには、 内部と表面部の温度差及び部材温度の降下速度をできるだけ小さくすることが重要である。このため型枠の存置期間を長くするなどの養生を行い、せき板等の脱型は表面部の温度と外気温との差が小さくなってから行うことが大切である。
6.13.5  試 験
(a)マスコンクリートの調合計画では、 一般の場合と異なりコンクリート部材の予想平均養生温度に基づいて調合強度を決定している。 また、構造体コンクリートの強度検査では、構造体コンクリートと同じ温度履歴を供試体に与えることが困難であるため、標準養生による供試体の強度試験結果による間接的な検査を行っている。
(b)構造体コンクリート強度の推定試験の判定は、ポテンシャル強度の確認によっているので、材齢 28日の圧縮強度試験結果が、調合管理強度以上であれば合格となる。

6章コンクリート工事 14節無筋コンクリート

第6章 コンクリート工事
14 節 無筋コンクリート
6.14. 1 一般事項
(a) 「標仕」では、土間コンクリートのうち、亀裂防止等のため補強筋を入れているものについては、塩分総量規制を受ける普通コンクリートとして取り扱うこととしている。
なお、官庁営繕工事においては、土間コンクリートはすべて補強筋を人れており、無筋コンクリートの適用を受けるものはほとんどない。
(b) 無筋コンクリートの適用箇所は、「標仕」6.14.1(e)からも分かるようにあまり強度を必要としないところが多いことから、一般的には、設計基準強度を18N/ mm2とすればよい 。
(c) 防水層の保護コンクリートとして、「標仕」6.14.2 (a)により骨材の最大寸法 25mmの砂利を使用すると、コンクリートの厚さ60mmでこて仕上げをするのにはやや無理がある。こて仕上げを指定する場合は80mm以上とすることが 望ましい。
防水層の保護のコンクリートに気泡コンクリート (空気量が 50%以上も入る場合)を使用し、その上にモルタル 仕上げ等をすると接着力が弱く、はく離を起こすことが多い。こて仕上げに問題が多いので 「標仕」では気泡コンクリートを除いてある。
6. 14. 2 材料及び調合
(a ) コンクリート塊のリサイクルを促進するためには、適用箇所に応じて再生骨材を使用していくことが重要である 。
「 標仕 」 では無筋コンクリートにはJIS A 5308(レディーミクストコンクリート) 附属書A(規定)[レディーミクストコンクリート用骨材]の規定を満足するコンクリート用再生骨材 H を使用してよいことにしている 。
なお、再生骨材の産地を限定することは極めて困難なので、これを用いるコンクリートに使用するセメントは、アルカリシリカ反応抑制対策を考慮して高炉セメントB種又はフライアッシュセメントB種とするのが望ましい。
(b) 無筋コンクリートであるため、鉄筋を有する一般のコンクリートに求められる耐久性確保のための単位セメント量や水セメント比の規定は設けていない。
6.14.3 レディーミクストコンクリートの発注、品質管理等
(a) 「標仕」6.14.2 (b)に示すように、コンクリ ート構造体強度補正値の割増しは行わないことにしているので、使用するコンクリートの呼び強度は設計基準強度以上とする。一般的には呼び強度18 のコンクリートを使用すればよい。
(b) 無筋コンクリートの適用箇所を考えると、一般のコンクリートと同様に試し練りや構造体コンクリート強度の推定試験を行うのは実際的ではないことから、JIS A 5308(レディーミクストコンクリート)への適合を認証された普通コンクリートの場合には、試し練り及び構造体コンクリート強度の推定試験を省略できることとしている。

6章コンクリート工事 15節流動化コンクリート

第6章 コンクリート工事
15 節 流動化コンクリート
6.15.1 一般事項
(a) 流動化コンクリートを使用する場合には、その使用目的を明確にし、構造物のコンクリートが所定の品質のものとなるように、材料、調合、流動化の方法、品質管理の方法等必要な事項を施工計画書において確認する。
なお、(一社)日本建築学会では、「流動化コンクリート施工指針・同解説」において、流動化コンクリートの使用方法等について示しているので、これを表 6.15.1 に示す 。
表 6.15.1 流動化コンクリートの使用方法と調合の計画、使用目的
(流動化コンクリート施工指針・同解説より)
表6.15.1流動化コンクリートの使用方法と調合・使用目的.jpg
(b) 流動化コンクリートの施工に当たっては、工事現場にコンクリートについて十分な知識と経験をもつ施工管理担当者をおいて、入念な管理を行う必要がある。
6.15.2 材料及び調合
(a) 流動化剤は、JIS A 6204(コンクリート用化学混和剤)で標準形と遅延形に分類し、それぞれの品質規格を定めているが、銘柄によって品質に若干差があるので、JIS A 6204に適合するもののうちから品質の均一性及び使用実績等も考慮して選定する必要がある。
標準形は、一般のコンクリート工事に用いられるものであり、遅延形は、主として暑中コンクリート等でコンクリートの凝結を遅らせる目的に用いられる。
遅延形は流動化効果と凝結遅延効果を併せもつものであり、添加量によって流動化の程度と凝結遅延性が同時に変化するので、所定の凝結遅延性を得るためには、ベースコンクリートには遅延形のAE減水剤を用い、流動化剤は標準形とするのが望ましい。
流動化剤の主成分である高性能減水剤の中には、AE 効果が極めて小さいものがあり、ベースコンクリートに用いられるAE剤・AE減水剤との組合せについても十分に検討する必要がある。
(b) 流動化剤は、銘柄によって、流動化効果や空気量の安定性等に若干の差があるので、流動化コンクリートの調合は、工事に使用する材料を用い、実際の施工条件になるべく近い条件で試し練りを行って定める必要がある。
また、流動化コンクリートは、同じスランプの通常の軟練りコンクリートに比較してスランプの経時変化が大きいので、これについても試し練りの段階で検討を加えておくことが肝要である。
(c) 流動化剤は原液で用いられるので、通常の使月量で変化するコンクリートの水セメント比はおおよそ0.3%程度であり、圧縮強度に及ぼす影響はほとんどないこと、及び流動化剤添加前後の圧縮強度に関するする多くの実験報告によっても、流動化コンクリートの圧縮強度とベースコンクリートのそれとの間には、空気量が同じならば 有意な差はほとんど認められていないことにより、流動化コンクリートの調合は、ベースコンクリートの圧縮強度に基づいて定めてよいこととしている。
(d) ベースコンクリー ト及び流動化コンクリートのスランプは、コンクリートの種類・使用材料・運搬・打込み等の施工の条件に応じて無理のない組合せとし、「標仕」表6.15.1 を満足するように定める。
(e) 流動化コンクリートの空気量は、一般のコンクリートと同様に、通常の場合、普通コンクリートにあっては 4.5%とする。
( f ) 流動化コンクリートの品質は、ベースコンクリートの調合と流動化剤の添加量により左右される。 所要の品質の流動化コンクリートを得るためには、ベースコンクリートの品質が 一般のコンクリートと同様、「標仕」2 節の品質を満足していることが必要不可欠である。
6.15.3 コンクリートの流動化
(a) 流動化 コンクリートは、同じスランプの通常の軟練りコンクリートに比較してスランプの経時変化が大きいので、流動化剤の添加及び流動化のためのかくはんは、工事現場で行うこととしている。 また、かくはんの管理は、 回転数又はかくはん時間によって行うとよい。
なお、市街地でのトラックアジテータの高速かくはんは、騒音の問題が発生するので、工事開始前に住民の理解を得る必要がある(6.4.3 (b)参照)。
(b) 流動化剤を水で希釈して使用すると、コンクリートにあと添加される水の量が増えることになり、強度その他の性能に及ぼす影響が無視できなくなるので、流動化剤は原液で使用することとしている。
(c) 流動化コンクリートの施工に当たっては、流動化における工程管理は、できるだけシンプルであることが望ましいので、ベースコンクリートが所定の範囲で管理されている場合は、流動化剤の添加量は、あらかじめ定めた一定量とし、これを一度に添加することとしている。
なお、コンクリート温度の変化、その他の原因により、流動化効果が変化した場合、また、スランプの変動が大きい場合、工事現場における運搬車の待機が長くなった場合等においては、添加量を変更するなど適宜対処する。
(d) 現在、市販されているほとんどの流動化剤は液体であるので、質量又は容積のいずれかで計量することとし、計量誤差は,JIS A 5308(レディー ミクストコンクリート)の 8.2.2 [ 軽量誤差 ]の混和剤の規定と同じく1回計量分量の ± 3 %以内としている 。
6.15.4 品質管理
(a) 流動化コンクリートを製造するうえで、ベースコンクリートの品質変動ができるだけ小さくなるように品質管理することが特に重要であるので、一般のコンクリートと同様、ベースコンクリートの品質管理も「標仕」 5 節による。
(b) 流動化後のコンクリートの品質管理試験は、流動化の工程が計画どおりに実施され、所定の品質に適合したコンクリートを製造しているかどうかについて試験し、確認するものであり、あらかじめ定めた頻度で「標仕」5 節に準じて試験を行い、流動化工程の品質を管理し、また、運搬から打込みまでの品質の変化が確認できるようにする。そのため、流動化剤の投入場所には、コンクリートに精通した専任の施工管理担当者を配置し、入念な管理を行う必要がある。
なお、流動化コンクリートの調合強度は、ベースコンクリートの圧縮強度とほぼ同じとみなすことができるので (6.15.2 (c)参照)、ベースコンクリート及び流動化コンクリートの品質管理状態が良好と判断されれば、流動化コンクリートの調合管理強度の管理試験は省略してもよい。
6.15.5 運搬並びに打込み及び締固め
流動化コンクリートの運搬並びに打込み及び締固めの方法は、基本的には、一般のコンクリートのそれらと変わることがないので、「標仕」6 節によるとしている。
一方、流動化コンクリートは、同一スランプの軟練りコンクリートと比較して、スランプの経時変化が大きい、分離しやすいなど施工に関わる問題点もあるので、運搬並びに打込み及び締固めには、更に、次の事項も考慮する必要が ある。
(1) 流動化コンクリートは、通常の軟練りコンクリー トに比べてスランプの経時変化が大きく、また、使用材料や調合によっては、分離や品質変化が生じやすくなることがあるので、流動化後から打込みまでの時間が短くなるように事前に十分検討して、適切な運搬方法を定める必要がある。
(2) 流動化コンクリートは、練混ぜから流動化までの時間が長いほど、流動化後のスランプの経時変化が大きくなる。したがって、練混ぜから流動化剤添加までの時間をできるだけ短時間とし、また、荷卸しから打込み終了までに要する時間も外気温が 25℃ 以下の場合は 30分以内、25℃ を超える場合は 20分以内とすることが望ましい。
(3) 流動化コンクリートは、通常の軟練りコンクリートに比べてスランプの経時変化が大きいため、先に打ち込んだコンクリートの流動性を考慮して打重ね時間間隔の限度を定めるのがよく、外気温が25℃以下の場合は 60 分、25℃を超える場合は 40分程度にすることが望ましい。

6章コンクリート工事 [参考文献]

第6章 コンクリート工事
[ 参 考 文 献 ]
 
建築工事標準仕様書・同解説
 JASS 5 鉄筋コンクリート工事(2015) 日本建築学会
 
鉄筋コンクリート造建築物の
 品質管理および維持管理のための試験方法(2007)
暑中コンクリートの施工指針・同解説(2000)
型枠の設計・施工指針(2011)
 
鋼構造設計規準 (2005)
 
軽鋼構造設計施工指針・同解説(SI単位版)(2002)
 
木質構造設計規準・同解説 (2006)
 
コンクリートの調合設計指針・同解説 (1999)
 
寒中コンクリート施工指針・同解説 (2010)
 
流動化コンクリート施工指針・同解説 (1989)
 
コンクリートのひびわれ調査、補修・補強指針(2013)
   日本コンクリート工学会
公共建築改修工事・標準仕様書(建築工事編)(平成25年版)
  建築保全センタ—
建築改修工事監理指針(平成25年版)
床型枠用鋼製デッキプレート(フラットデッキ)
 設計施工指針・同解説 (2006)
 公共建築協会フラットデッキ工業会

7章鉄骨工事 1節一般事項

第7章 鉄骨工事
01節 一般事項
7.1.1 適用範囲
(a) 「標仕」で規定している「構造上主要な部材に鋼材を用いる工事」とは、建物を鉄骨構造とするもののほか、鉄骨造の玄関ひさし、車庫等を想定しており、既製の鋼製階段、水槽の架台等は対象外と考えてよい。
(b) 工事の流れを図7.1.1 に、作業の流れを図7.1.2 に示す。
図7.1.1鉄骨工事の流れ.jpg
図7.1.1 鉄骨工事の流れ
図7.1.2_鉄骨工事の作業の流れ.jpg
図7.1.2 鉄骨工事の作業の流れ
(c) 施工計画書の記載事項は、7.1.5 を参照されたい。
(d) 構造上主要な部材にステンレス鋼を使用する場合は特記による。その際には、(-社) 日本鋼構造協会「ステンレス建築構造設計基準・同解説」を参照されたい。
7.1.2 基本要求品質
(a) 鉄骨工事で使用する鋼材は,建物の構造耐力上必要な材質並びに断面形状及び寸法が設計図内で指定される。
基本要求品質としては、指定された材料が正しく使用されていることを求めているので、材質や寸法等を含めて、これを証明できるようにしておく必要がある。
板材等を切断して鉄骨部材を製作する場合は、一般に、鋼材は製造工場(メーカー)又は商社等から切板工場(シャーリング工場)等に出荷され、ここで必要な断面形状に切断され、更に、鉄骨製作工場(ファブリケーター等)で加工・組立が行われる。この過程において、鋼材の大半を物件ごとにロール注文する場合には問題になることは少ないが、鋼材問屋(特約店)を通して市中購入する場合には、鋼材は順次小口に細分され、多様なユーザー等にわたっていくことがある。この時、鋼材そのものと、その規格品証明書(ミルシート) が対になって動いていないことがある。特に鋼材等を部品に切断した場合、その切断された部品とミルシートの対応ができていないことがある。切断する前の鋼材の製品番号等とミルシートが一致していることを前提とし、ミルシートの内容をリスト化して鋼材の品質証明を行う方法の一例として(-社)日本鋼構造協会・建築鉄骨品質管理機構から、2009年12月に「建築構造用鋼材の品質証明ガイドライン」が提案されている。すなわち、流通段階ではミルシートの内容をリスト化した「原品証明書」で品質証明を行い、これに基づいて鉄骨製作工場の材料管理買任者(鉄骨製作管理技術者資格保有者が望ましい。)が「鉄骨工事使用鋼材等報告書」を作成・発行する。施工者側は、鉄骨工事管理買任者がこの報告書で品質を確認する。更に、これを工事監理者に提出して、使用鋼材等の品質を確認するシステムである(7.14.2 参照)。
なお、SN材の識別については、7.2.1(b)(9)を参照されたい。
(b)「鉄骨は、所定の形状及び寸法を有し、所定の位置に架構されていること」とは、鉄骨の部材が設計図書あるいは工作図のとおりに製作され、工事現場において架構されていることを要求したものである。この場合の鉄骨の製作精度及び建方精度は、建物等の規模や構造的重要度等を勘案して特記することとしているので、特記事項を満たしていること、また、特記のない場合は、(ー社)日本建築学会「JASS 6 鉄骨工事」付則6[鉄骨精度検査規準]によることとしているので、これに適合していることが条件となる。
(c)「鉄骨は、構造耐力、耐久性、耐火性等に対する有害な欠陥がなく、接合部及び定着部は、作用する力を伝逹できるものであること」とは、(b)が仕上りの状態に関する要求事項であるのに対し、鉄骨の製品が有すべき性能に関する要求である。
構造耐力、耐久性、耐火性等に対する有害な欠陥とは、例えば、溶接割れ等、部材の加工・組立時の欠陥のほかに、運搬及び建方中の損傷や建方後の補助部材の溶接等による損傷も含まれるので、有害な欠陥を生じさせないような施工の手順や品質基準、養生方法等を品質計両で明確にし、これによって施工を進める。また、有害な欠陥を発生するおそれのある場合は、その処置や補修方法についてもあらかじめ定めておくことが望ましい。
接合部や定着部の力の伝達では、構造設計上必要な断面寸法等が指定されている。しかし、例えば、高力ボルト摩擦接合の場合では、ボルトの種類や数量等は指定されたものであっても、摩擦面の処理やボルトの保管方法等が適切でなかった場合、あるいは、溶接部では、溶接の方法や施工条件、母材の材質と溶接材料の種類との組合せ等が適切でなかったりすると、作用する力を伝達することができなくなる。したがって、これらのことについても品質計画に適切な施工方法と管理方法について定め、更に、これらに従って適切に管理が行われたことの分かる資料があれば、要求品質を満たしているものといえる。
7.1.3 鉄骨製作工場
(a)鉄骨製作工場は,設計図書に特記された加工能力等及び施工管理技術者の適用に適合するものとする。これらの特記がない場合は、受注者等が選定した適切な鉄骨製作工場について、次の事項を記載した文書等から加工能力等を確認すればよい。
(1) 工事経歴
(2) 鉄骨製作工場の規模,契約電力及び機械設備
(3) 生産能力(月産能力及び加工能力の余裕)
(4) 他工事の製品の出来ばえ
(5) 鉄骨製作業者の資格基準
(6) 鉄骨製作管理技術者、溶接施工管理技術者、非破壊検査技術者、溶接技能者の資格・人数
(7) 品質管理システム等
(8) その他
(b)「指定性能評価機関」による工場認定制度とは、所定の要件を整えて国土交通大臣から指定された民間機関が、工場の品質管理体制、規格類の整備状況等を評価し、その評価を基に国土交通大臣が認定を行うものである。
指定性能評価機関には、㈱日本鉄骨評価センター及び㈱全国鉄骨評価機構がある。どちらも評価基準は共通であり、その内容は表 7.1.1 及び 2のとおりである。
表7.1.1 工場認定に関わる評価項目
表7.1.1工場認定に関わる評価項目+.jpg
表7.1.2 工場認定のグレード別の適用範囲と別記事項(その1)
表7.1.2工場認定のグレード別の適用範囲と別記事項(その1).jpg
表7.1.2 工場認定のグレード別の適用範囲と別記事項(その2)
表7.1.2工場認定のグレード別の適用範囲と別記事項(その2).jpg
表7.1.2 工場認定のグレード別の適用範囲と別記事項(その3)
表7.1.2工場認定のグレード別の適用範囲と別記事項(その3).jpg
表7.1.2 工場認定のグレード別の適用範囲と別記事項(その4)
表7.1.2工場認定のグレード別の適用範囲と別記事項(その4).jpg
表7.1.2 工場認定のグレード別の適用範囲と別記事項(その5)
表7.1.2工場認定のグレード別の適用範囲と別記事項(その5).jpg
7.1.4 施工管理技術者
(a)「標仕」7.1.3 の規定により「施工管理技術者を適用する」旨の特記がある場合には、次の事項を記載した施工計画書を提出させ、当該製作工場に、監督職員が「標仕」7.1.4(a)で規定する能力があると認める者が常駐することを確認する必要がある。
なお、(3)又は(4)の資格に該当するものの例としては、(b)及び(c)(4)に示すものがある。
(1) 工事実績
(2) 鉄骨製作工場での立場(役職等)
(3) 資格証明
(4) ほかの有資格
(5) その他
(b) 平成 9年版「共仕」で規定されていた鉄骨製作管理技術者は、「建築設計等関連業務に関する知識及び技術の審査・証明事業認定規程」に基づき認定された資格であったが、審査・証明事業の廃止に伴い民間資格となった。しかし、この有資格者は、「標仕」7.1.4(a)で規定する能力のある者の一例と見なすことができる。
なお、「鉄骨製作管理技術者」は、(-社)鉄骨建設業協会及び(-社)全国鐵構工業協会の 2団体で設立した「鉄骨製作管理技術者登録機構」により評価されている。
(c)「標仕」では規定されていないが、(-社)日本鋼構造協会の「建築鉄骨品質管理機構」では、鉄骨造建築物の安全性と品質の確保を目的として、平成 10年度から「建築鉄骨技術者制度」を実施し、現在、次の 4資格について技術者の認定登録を行っている。平成 25年 4月 1日 現在の認定登録状況を表7.1.3 に示す。
(1)建築高力ボルト接合管理技術者
建築鉄骨の高カボルト接合が適切に実施されるよう、作業者を指導し、工事の監理・管理・検査をする技術者
(2)建築鉄骨超音波検査技術者
建築鉄骨の溶接部の施工の良否を判断する超音波探傷検査(UT)技術者
(3)建築鉄骨製品検査技術者
建築鉄骨の製作過程及び製作後に、製品の良否を判定する検査技術者
(4)鉄骨工事管理責任者
鉄骨工事が適正に施工されるよう、施工計画から工事の完了に至るまでの品質管理・施工管理等の全般を管理する技術者
表 7.1.3 技術者の認定登録状況(平成 25年 4月1日現在)
表7.1.3技術者の認定登録状況.jpg
7.1.5 品質管理
(a) 鉄骨工事の品質管理とは、要求される鉄骨の品質をつくり出すために、設計から製作・建方までの各工程で品質をつくり込む一連の活動であり、この品質管理の確実な実施によって品質保証を可能にする。
(b) 施工品質を保証する受注者等・鉄骨製作業者の品質管理は、次の 4段階に大きく分けられる。
(1) 設計図書の把握と疑義事項の解明
(2) 要求された品質を実現するための計画作成
(3) 計画どおりの継続的な実施
(4) 施工品質が要求された品質を確保していることの証明
(c) 受注者等は、鉄骨製作業者の品質管理システムを十分に理解し、双方の合意に基づき、品質管理実施要領を計画する。また、計画の実施においても、協力して効果的な体制をつくることが重要である。
(d) 受注者等及び鉄骨製作業者が、要求品質を確保するため、保有すべき機能は次のとおりである。
(1) 品質管理方針を提示する機能
(2) 設計図料の内容を確認し、製作・施工の目標品質を設定する機能
(3) 製作・施工の目標品質を実現するための計画を行う機能
(4) 計画に従って品質をつくり込む機能
(5) 施工品質を確認・評価する機能
(6) 品質評価情報に基づき品質改善・生産性向上を行う機能
(7) 標準化を促進する機能
(8) 不具合の再発防止と予防する機能
(9) 品質の証明に必要な記録を残す機能
(10) 鋼材の製造工場又は商社等から最終の鉄骨製作工場までの流通経路を証明する機能
(e) 受注者等及び鉄骨製作業者が工場製作及び工事税場施工に先立ち作成する施工計画書・工場製作要領書・工事現場施工要領書の記載事項は、おおむね次のとおりである。
なお、赤文字を考慮しながら品質計画を作成する。
(1) 施工計画書:(鉄骨工事全体の品質管理要領を含む)
① 総則及び工事概要
② 実施工程表
③ 受注者等の管理組織、工事担当及び協力業者
④ 仮設計画
⑤ 建方計画
⑥ 接合計画
⑦ 他工事との関連
⑧ 安全管理
⑨ 作業のフロー、管理の項目・水準・方法、品質管理体制、管理責任者、品質記録文書の書式とその管理方法
(2)工場製作要領書(工場製作範囲の品質管理要領を含む)
① 総則及び工事概要
② 鉄骨製作業者の管理組織、工事担当(施工管理技術者・溶接施工管理技術者・検査技術者の氏名、所持資格等)
③ 溶接技能者の氏名、所持資格等
④ 製造設備の能力(製作関連の機械設備、配置図等)
⑤ 工程表(工作図・材料調達・製作・製品検査・搬出等の時期)
⑥ 使用材料の名称、規格、製造所及び使用箇所
⑦ 工作・溶接(加工・組立・溶接の製作手順、開先形状、溶接工法等 )
⑧ 品質管理・検査計画( 管理・検査項目、方法、管理値、不具合処置方法等)
⑨ 塗装計画(材料・エ法・塗装範囲等)
⑩ 製品の輸送計画(輸送方法・養生方法・安全対策等)
(3)工事現場施工要領書(工事現場施工範囲の品質管理要領を含む)
① 総則及び工事概要
② 工程表(アンカーボルトの設置・建方・高力ボルト締付け・溶接作業・完成検査等の時期)
③ 作業の管理組織及び協力業者、工事担当(施工管理技術者・溶接施工管理技術者・非破壊検査技術者・溶接技能者の氏名、所持資格等)
④ アンカーボルトの保持及び埋込み工法と検査方法
⑤ 定着の工法
⑥ 建方作業順序と建入れ直し及び建入れ検査方法並びに不具合処理方法
⑦ 高力ボルト接合作業手順と締付け後の検査方法並びに不合格処理方法
⑧ 溶接接合作業手順と精度・外観・内部検査方法並びに不合格処理方法
⑨ 超音波探協試験の検査機関及びその管理組織
(f) 提出された施工計画書・工場製作要領書・工事現場施工要領書から、品質管理実施要領及び保有する品質管理機能が適切であるかを判断する。
(g) 工場製作及び工事現場施工における検査の項目・方法・管理値等の基準は、特記がなければ、JASS 6 付則6[鉄骨精度検査規準]を満足しなければならない。検査の項目・方法・管理値等を満足することが不可能な場合は、満足することができない原因を明確にし、問題の原因を取り除く処置方法や、品質を損なわない対処方法を受注者等と協議して確定する。
(h) 鉄骨製作業者と受注者等が実施する検査内容は、次のとおりである。
(1) 鉄骨製作業者の社内検査
工場製作要領書・工事現場施工要領書に記載した計画に基づき、工場製作・工事現場施工の各工程と完了時に自主的に社内検査を実施し、検査の結果を記録して、受注者等に報告する。
(2) 受注者等の中間検査・受入検査
鉄骨製作業者の社内検査結果の報告を受け、検査成績書の内容確認と抜取りによる製品と施工結果の現物検査を実施する受入検査を行い合格したものを受け入れる。受入検査の結果を記録し監督職員に提出する。
なお、最終の製品となってしまってからでは検査できない項目については、各製作工程途中で検査が終了していなくてはならない。このような検査を中間検査といい、社内検査、中間検査、受入検査の3種類の検査で製品の品質が確保される。
(i) 監督職員の検査については、受注者等が作成した受人検査成績書の内容を確認し、適否を判断することが原則であるが、必要に応じて受注者等の受入検査時に実際の製品に対して直接検査を行う。
(j) 鉄骨工事の品質管理を合理的に行うためには、設計者、受注者等、鉄骨製作工場間の情報の伝逹が、確実に行われることが不可欠である。そのような品質管理の具体的あり方を述べたものとして、「国土交通省総合技術開発プロジェクト「建設事業の品質管理体系に関する技術開発」報告者 建築分野編」(平成13年 3月)の第3章[鉄骨造建築物の品質管理]がある。
7.1.6 環境問題への配慮
(a) 鉄骨工事と環境問題の関わりとしては、次の 3つに分けられる。
(1) 地球環境への配慮
(2) 地域環境への配慮
(3) 室内環境への配慮
中でも、地球環境問題については、気候変動抑止に向けた低炭素社会実現の動きが、一層加速しつつある。特に高炉鋼材は1t 製造するのに 約 2tのCO2 が排出されることが知られており天然資源枯渇はもとより、CO2排出削減の観点からもその利用に当たっては充分な配慮が必要である。
(b) 地球環境問題の関わりとして留意すべき事項には、次のようなものが挙げられる。
(1) 電炉鋼材の活用等リサイクルの促進
(2) 鋼材のリュースの促進
(3) 鉄骨製作段階における加工スクラップ等の削減
(4) 建物の長寿命化の雅進
電炉鋼材の活用は、天然資源の枯渇抑止の観点からはもとより、CO2 排出量が高炉鋼材の約1/4 程度に削減されることからも、有用である。従来、電炉鋼材は、不純物の混入により、溶接性・破壊靭性等が高炉材に比べ劣ることがいわれてきた。しかし、近年においては、不純物の除去技術の進歩により、性能において高炉材とそん色のない製品が供給されるようになってきており、建築構造用の規格であるSN規格を満足する製品も多く出回っている。
ただし、JISでは成分量の規定のない元素で、溶接性、破壊靱性に悪影評を及ぼす元素が一部存在するので注意が必要である。溶接性、破壊靭性等において特に通常より高い性能を期待する部位等においては、規格とは別に当該元素の含有量、目標靭性値等を指定することが望ましい。
建物の長寿命化推進もまた、天然資源の枯渇抑止、CO2排出削減の観点から重要である。最近、構造躯体等の長寿命化を意図して、ステンレス鋼材等の活用が提案される場合がある。しかし、例えばステンレス鋼材と普通鋼材の混用は、場合によっては電食等の新たな問題を引き起こすおそれもあり、十分な注意が必要である。
(c) 地域環境問題の関わりとして留意すべき事項は、工事中の近隣への錆の飛散等の問題が挙げられる。
(d) 室内環境問題としてはシックハウス・シックビル問題があるが、それと鉄骨工事の関連については、塗装の問題が挙げられる。これについての詳細は、18章、19章等を参照されたい。
通常、塗装の仕様については、設計段階で十分に配慮がなされており、その指示に従って施工が行われれば比較的問題は少ないと思われるが、まれに工事現場において安易に仕様変更が行われ、結果として問題が生じることがあるので注意する。
その他の室内環境問題としては、耐火被覆の問題が挙げられる。従来、耐火被覆には主成分として長くアスベスト(石綿)が使用されてきたが、発がん性等の理由からその危険性が指摘されていた。
アスベストを原材料とする吹付け耐火被覆材については大気汚染防止法により、解体工事の届出、マニュアル遵守等が義務付けられている。また、平成 18年 9月に改正された労働安全衛生法施行令により石綿等の製造等が全面禁止とされ、石綿障害予防規則により更なる石綿暴露防止対策の充実が図られた。平成18年 10月には建築基準法が改正され、石綿の飛散のおそれのある建築材料の使用が規制された。
「標仕」でも平成19年版の改定で、工事に使用する材料はアスベストを含有しないものとされている。
今日では、耐火被覆材の脱アスベスト化が達成されている。

7章鉄骨工事 2節材料

第7章 鉄骨工事
2節 材 料
7.2.1 鋼 材
(a) 鋼材の製造
建築用に使用される鋼材は、その用途に応じて種々の特性を有し、その素材である鉄鉱石、鉄くずから多くの製造工程を通して製造される。図7.2.1 に、製鉄所における素材の一貫製造工程の概略を示す。
図7.2.1_製鉄所における素材の一貫製造工程.jpg
図 7.2.1 製鉄所における素材の一貫製造工程
鉄鋼製造工程の中で鋼の特性を決める主な要因は、製鋼工程における鋼の成分・鋳造法、圧延・機械成形工程における加工・溶接や熱処理条件、表面処理工程におけるめっき・塗料の成分や被覆方法等で、これらを適切に組み合わせることにより所定の特性をもった素材が製造される。特に注目すべきことは、技術の向上により1970年代まで主流であった造塊・分塊法が、連続鋳造法に移行して、現在では 95%以上の鋼材が連続鋳造により製造されるようになったことで、結果として鋼材の品質向上に大きく貢献している。また、製造された素材は、試験や検査によって所定の特性をもっていることが確認される。表7.2.1は、製鉄所が行っている主な試験や検査項目である。
なお、製造された素材について、製造業者より品質の証明書として規格品証書(ミルシート、検査証明書、試験成績書等)が発行される。
表7.2.1 製鉄所における主な試験や検査項目
表7.2.1_製鉄所における主な試験や検査項目.jpg
(b)構造用鋼材の性質と種類
(1) 鋼の物理的性質
通常の鋼がもつ基本の物理定数を、表7.2.2 に示す。
表7.2.2 鋼の物理定数
表7.2.2_鋼の物理定数.jpg
(2)鋼中の炭素含有量と材質
鉄骨工事に使用される構造用鋼は、そのほとんどが炭素鋼(普通鋼)と呼ばれるものである。炭素鋼は、炭素含有量が通常0.02~約2%の範囲の鋼であり、鋼中の炭素(C)含有量によりその材質が大きく変化する。一般的には、炭素量が多くなると引張強さと硬さは増加するが、伸びや靭性(ねばり強さ)が低下する。そして、炭素量が多くなり過ぎると材質はもろくなり構造用鋼材として使用できなくなる。図7.2.2 に炭素量と材質変化を示す。
図7.2.2_炭素量と材質変化.jpg
図 7.2.2 炭素量と材質変化
※シェルフエネルギーとは、鋼のシャルピー試験において、完全延性破壊を呈する温度のエネルギーをいう。
(3)高温度における材質変化
建築構造物の設計や工事の際の、鋼材の材質特性は、一般的に常温の値を使用することが多い。しかし、鋼材は、温度の上昇とともに強度が低下することがよく知られており、鋼材の使用場所や環境によって高温度になるような場合は、この強度の低下をあらかじめ見込んで使用しなければならない。図7.2.3 に、鋼材の主な材質が、温度とともに変化する状況を示す。
図7.2.3_温度と鋼材の材質変化の関係.jpg
図 7.2.3 温度と鋼材の材買変化の関係
(4) 鋼の成分と溶接性
鉄骨工事にとって重要な溶接性は、鋼材の炭素量と密接な関係にある。炭素が多く含まれる鋼材の溶接性は一般的には悪い。したがって、炭素量を適切に抑えて、ほかのマンガン(Mn)やけい素(Si)等の成分を添加して引張強さ、硬さ、伸びを確保しながら溶接性の改善を図ることが多い。 鋼材の溶接性への影響度を表す数値が炭素当量(Ceq)、溶接割れへの影響度を表す数値が溶接割れ感受性組成(PCM)である。これらは、添加されたほかの成分の影響を、次式(JIS G3106、JIS G 3136より引用)によって換算した数値である。
鋼の成分,炭素当量と溶接割れ感受性組成.jpeg
炭素当量及び溶接割れ感受性組成は、溶接材料、溶接条件、溶接部の形状等とともに溶接部の性能を確保するための重要な指標の一つであり、例えば、JIS G 3136(建築構造用圧延鋼材)(SN材)では、炭素当量を 400N/mm2の B,C材で 0.36%以下、490N/mm2 の B、C材で 0.44%以下(厚さ 40mm以下)、0.46%以下 (厚さ 40mをm超え 100mm以下)と規定している。 また、溶接割れ感受性組成もSN400B,C材で 0.26%以下、SN490B, C材で 0.29%以下としている。
なお、式中の元素記号は、その含有量を重量%で示したものである。
(5) 熱処理と材質変化
鋼は, 熱処理によって材質を変化させることができる。 素材に行われる熱処理や溶接部又はその周辺に残る有害な影響を解除する溶接後の熱処理は、この性質を利用したものである。
通常行われている熱処理には、次のような種類がある。
①焼入れ
鋼を硬くし、強度を増加するためにある特定の温度以上まで加熱したのち、急冷する方法
②焼戻し
焼入れした鋼の硬さや強度を減少して、靭性(ねばり強さ)をもたせるため適切な温度(400~650℃程度)まで加熱したのち、自然に冷却する方法
③焼ならし
加工した鋼の結晶組織を微細化・均一化するため、ある特定の温度以上まで加熱したのち、自然に冷却する方法
④焼なまし
鋼を軟らかくするために結品組織の大きさを整えたり、内部応力の除去のため、適当な温度で一定時間加熱したのち、ゆっくりと冷却する方法(炉の中で冷却することが多い。)
溶接構造物や溶接機械部品の内部応力除去のために行われる熱処理を、応力除去焼鈍ということがある。
(6) 鋼材の用途と分類
鋼材には.多くの種類があり用途に応じて使用される。各々の鋼材は、品質要求に適合するように製造されているから、十分な配慮(例えば、構造物の荷重・圧力・温度等の条件、切削・溶接・熱処理・表面処理等の加工条件に合うかどうか)をして、適切な鋼材を使用する。
構造部位の視点に立つと、激震時に部材が塑性化する部位か弾性範囲に留まる部位かによって、降伏点又は耐力、降伏比、板厚方向性能の保証の有無を使い分けることが直要である 。
(7)主な鋼材の種類
(i) 建築基準法に基づく告示に規定された主な鋼材の種類とその概要を表7.2.3に示す。
なお、JIS G 3106(溶接構造用圧延鋼材)で熱処理を行ったときは、記号の末尾に焼ならしN、焼入れ焼戻しQ、熱加工制御 TMC の各記号を付記することになっている 。
また、JIS G 3106 で内部欠陥のないことを立証するために超音波探傷試験を行ったときは、記号の末尾に UT を付加して表す。 超音波探傷試験は、JIS G 0901(建築用鋼板及び平鋼の超音波探傷試験による等級分類及び判定基準)による。
なお SN400C、SN490Cは出荷前に超音波探傷試験が実施されている。また、SN400B、SN490B はオプションで超行波探傷試験ができることになっている 。
JIS G 3101 (一般構造用圧延鋼材)に規定されるSS400 材と JIS G 3106 に規定される SM490A材は建築用鋼材として多く使用されているが、溶接性、衝撃特性及び板厚方向の性能が必要となる箇所に使用する場合は、特にりん(P)と硫黄(S) の不純物の含有量に注意して使用する。
溶接性において、高温割れの主因は溶接金板のデンドライト境界面に残存する低融点の不純物にあるとされており、 P や S 等が割れを促進する元素として知られている。また、T 継手あるいは隅肉多層盛溶接部に発生するラメラテアは、圧延方向に伸長した鋼板の層状介在物 (MnS) が原因の一つとされている。更に、この層状介在物 (MnS) は、板厚方向の絞り値にも大きく影響する。参考として、各鋼種の P 及び S の JIS 規格値を表 7.2.4 に示す。
なお、溶接接合の場合は、その部位の重要度に応じてP や S の少ないものを使用することが望ましい。
(ⅱ) 表 7.2.3 に掲げるもののほか 建築基準法に基づき指定又は認定を受けた構造用鋼材及び鋳鋼がある。
表 7.2.3 主な綱材の種類と概要
表7.2.3_主な鋼材の種類と概要.jpg
表 7.2.4 各鋼種のP及びS のJIS 規格値(単位:%)
表7.2.4_各鋼種のP及びSのJIS規格値.jpg
(8)建築構造用圧延鋼材( SN材)
(ⅰ) 建築物の主要構造部に用いられる鋼材として、SS材、SM 材の JIS 規格値を満足するだけでなく、次のような条件も満足する。
① 降伏点の上限値規定
② 降伏比(降伏点/ 引張強さ) の上限値規定
③ 板厚方向の絞り値の下限値規定 (C材のみ)
④ 化学成分のうち、より厳しい P, S 値の規定
⑤ 炭素当量又は溶接割れ感受性組成の規定
⑥ JIS G 0901 による超音波探傷試験による内部品買の保証(C 材では規格として義務付けられている。 また、B材でもオプションで超音波探傷試験による内部品質の保証も可能である。)
(ⅱ) JIS の概要は、次のとおりである。
名     称:建築構造用圧延鋼材
鋼種種類の記号:SN400A,B,C、SN490B, C
製 造 範 囲 :板厚 6mm以上、100mm以下の鋼板、帯鋼、平鋼及び熱間圧延形鋼
この鋼材の特徴は、次のとおりである。
① これまでの溶接性による識別のための鋼種記号SS材、SM材とは別に、建築用鋼材として鋼種記号 SN材とする。
② 溶接性の保証の有無、板厚方向の引張り特性の保証等を、強度区分の末尾記号 A, B. C で表示する。
A : 主として弾性設計の範囲内で使用し、主要な溶接を行わない部材( 小梁、間柱、母屋、胴縁等の 二次部材 )に適用するもの 。
B : 溶接を行う部材であり かつ,塑性変形能力を期待する部材(柱、梁等耐震用主要構造部材) に適用するもの。
C : 溶接性、塑性変形能力を必要としたうえで、更に板厚方向引張応力が作用する部材(溶接組立箱形断面柱のスキンプレート、通しダイアフラム等)に適用するもの。このため、C 材では板厚方向引張り性能として絞り試験及び鋼板では UT (超音波探傷)試験が実施される。
③ 引張強さの区分は、これまでの 400Nと 490N と同じ 2種類とする。それぞれに対する F値はこれまでと同じ扱いである。
④ ミルシートに記載される化学成分の種類は増える。化学成分値については、B,C 材にあっては溶接性を重視する材料であることから P,S値が大幅に低減されている。 また、予熱管理も考慮して Ceq 又は PCMを保証するものとなっている。
⑤ 機械的特性に関する規定としては、若干の例外はあるが、通常使用される範囲の板厚のものに対しては次のとおりとなっている。
降伏点又は耐力:下限と上限を規定
引張強さ   :下限と上限を規定
降伏比    :上限を規定
0℃シャルピー吸収エネルギー値:下限を規定
これは、現行の耐震設計の基本理念が鋼部材の塑性変形能力によって地震入力エネルギーを吸収するものとしていることに対応させたものである。
⑥ 鋼板、形鋼の板要素の板厚マイナス側の公差が大輻に縮小された。これによって、これまで存在していた公称板厚りより薄い板要素の鋼材はほとんど排除された。
⑦ すべてのH 形鋼 ( (11)の外法一定 H 形鋼を含む。)のフィレットの r 寸法が H形鋼のサイズごとに統一され、8,13,18,22,26 mm の 5 つに集約された。
(9) 鋼板のマーキング
建築構造圧延鋼材 (SN材)には、切板に切断された段階でも明らかに規格材であると識別できるように、鋼板表面全面に社章あるいはドットマーク・規格名称をマーキングができることになっているので、マーキングのある材料を使用するとよい。
なお、形鋼には全面マーキングは行っていないが.全長にわたって連続マーキングしているものがある。
マーキングの内容は、次のとおりである
① マーク表示面:表(おもて)面全面
② マーク表示項目:社章又は規格分別マーク又はドットマーク
 1) SN400B,C  社章と菱形
 2) SN490B,C  社章と円形
 3) その他   社章
③ マーク表示ピッチ:長手、幅方向ともに 350mmピッチ程度
④ マーク 寸 法:80mm × 80mm程度
(10) その他の鋼材
( i ) 建築構造用 TMCP鋼
従来の鋼材の製造法は、アズロール(圧廷のまま)又は焼ならし処理が主体であった。この方法だと化学成分で強度を確保せざるを得ないが、炭素量や合金成分が高くなると、炭素当量が高くなり溶接性に悪影響を及ぼす。特に、厚肉鋼板ではこの領向が著しかった。
最近、超高層建築等板厚の大きい場合に使用頻度の高い TMCP鋼は、この点を解決したものである。TMCP は Thermo Mechanical Control Process の略称で「熱加工制御」又は「加工熱処理」とも呼ばれている。TMCP は、鋼材製造法を指し、TMCP 鋼はその方法で作られた鋼材のことである。
TMCP は熱間圧延時の圧延温度の制御と、その直後の冷却方法との組合せにより最適な材質をつくり込む。冷却方法は水冷型と非水冷型に分類されるが、建築用鋼材では通常水冷型が用いられている。
TMCP鋼と従来鋼の圧延方法の比較を図 7.2.4 に.TMCP鋼の炭素当量と強度の関係を図7.2.5 に示す。
図7.2.4_TMCP鋼と従来鋼の圧延方法の比較.jpg
図 7.2.4 TMCP鋼と従来鋼の圧延方法の比較
図7.2.5_TMCP鋼の炭素当量と強度の関係.jpg
図 7.2.5 TMCP鋼の炭素当量と強度との関係
大手高炉メーカー各社は、建築構造用 TMCP鋼材で、建築基準法に基づく認定を取得している。 これによると、この材料は厳格な品質管理のもとで、化学成分の調整と水冷型熱加工制御法による製造法で板厚 40mmを超え 100mm以下の材でも、40mm以下と同じ基準強度( F値 )が保証されている。
(ii) 冷間成形角形鋼管
冷間成形角形鋼管には、JIS による冷間成形角形鋼管(JIS G 3466 一般構造用角形鋼管 )と建築構造用に使用することを目的とした国土交通大臣認定による冷間成形角形鋼管があり、鋼板をプレス成形して製造される冷間プレス成形角形鋼管と鋼帯からロール成形により製造される冷間ロール成形角形鋼管に分けられる。
この国上交通大臣認定による冷間成形角形鋼管は、①塑性変形能力の確保、②溶接性の確保、③公称断面寸法の確保、④角部コーナー Rの曲率半径の統ーを特徴とする材料である。冷間プレス成形角形鋼管は、辺長及び板厚が 200 × 6(mm) ~1,000 × 40(mm)の範囲で製造され、鋼管の引張強度レベルは400N/mm2級と490N/mm2級の 2種類がある。 490N/ mm2級の鋼管には、角部の靭性(試験温度 0℃でのシャルピー吸収エネルギー70J以上)を保証した角形鋼管もある。冷間ロール成形角形鋼管は,辺長及び板厚が150 × 6(mm) ~ 550 × 22(mm) の範囲で製造され、鋼管の造管前の鋼帯の強度は 400N/ mm2級であるが、造管後の降伏点の下限値を 295N/ mm2としている 。 詳細は、(独)建築研究所監修 「冷間成形角形鋼管設計・施工マニュアル」を参照されたい。
なお.冷間状態で円形鋼管にしたのち、熱間状態で角形にする熱間成形角形鋼管もある 。
( iii ) 高強度鋼
近年の鉄骨造建築物の高層化・大型化に伴い、厚くなる鋼部材の板厚を抑え軽量化等を図るため、490N/mm2 級鋼を超える 550、590、780、1,000N/ mm2級の高強度鋼が開発されている。
これらには、使用ニーズに合わせて、低降伏化、高降伏化、溶接施工の難易度軽減のための予熱低減を可能とするなどの性能を有する製品も製造されている。
(iv) 耐火鋼( FR鋼)
鋼材は高温になると強度が低下するため、耐火被覆が必要となる。 耐火鋼は、耐熱性を高めるためにモリブデン等の合金を添加することで高温強度を向上させ、耐火被覆を軽減若しくは無被覆にできる鋼材である。 600℃においても、常温規格値の 2/ 3 以上の降伏耐力を保証している。
(v) 低降伏点鋼
制振構造において低降伏点鋼を使用する制振デバイスは他のデバイスに比較して安価で、かつ、信頼性や耐久性も高いことから急速に普及してきた鋼材である。 低降伏点鋼は通常の柱梁の主架構の鋼材よりも降伏点が低く、地震時に
低降伏点鋼を早期に降伏させることで地震入カエネルギーを鋼材の塑性エネルギーに変換して制振効果を発揮させる。
なお、低降伏点鋼は、降伏点又は耐力が 225N/mm2級及び 100N/mm2級の 2種類が主に使用される。
(11) 外法一定 H形鋼 (定形H 形鋼)
従米の H形鋼は、圧延製造上の制約から、同一シリーズでは内法が一定であり、フランジ厚の変化によってせいが異なっていた。 このため、柱梁接合部に極端に厚いダイアフラムを要したり、継手部にフィラープレートの挿人が必要であった。
圧延製造技術の進歩により、上記の問題点を解決した製品が外法一定 H形鋼である。 この H 形鋼は同一シリーズ内のサイズ構成も豊富で、経済的なサイズ選択の自由度が広がった。各社のサイズはほぽ同じである。フィレット寸法は全メーカーで統一寸法(13、18mm)となっている。 また、この H 形鋼のフランジ、ウェブの板厚は、鋼板の常用板厚とほとんど同厚になっている( 例外は板厚14mmのみ)。
(c) 鋼材のJIS の抜粋
JIS G3136(建築構造用圧延鋼材)の抜粋を次に示す。
JIS G3136:2012
1.適用範囲
この規格は、建築構造物に用いる熱間圧延鋼材(以下、鋼材という。)について規定する。
3.種類及び記号並びに適用厚さ
鋼材の種類は 5種類とし、その記号及び適用厚さは、表1による。
表1種類の記号
JIS_G3136_表1_種類の記号.jpeg
4.化学成分
鋼材は、11.1によって試験を行い、その溶鋼分析値は、表2 による。
表 2 化学成分
JIS_G3136_表2_化学成分.jpeg
5. 炭素当量又は溶接割れ感受性組成
5.1 炭素当量又は溶接割れ感受性組成
鋼材の炭素当量又は溶接割れ感受性組成は、次による。
a) 炭素当量は、表3による。炭素当量の計算は、11.1 の溶鋼分析値を用い、式(1)による。
なお、計算式に規定された元素は、添加の有無にかかわらず、計算に用いる。
5.1_炭素当量.jpeg
ここに、Ceq:炭素当量(%)
表3 炭素当量
JIS_G3136_表3_炭素当量.jpeg
b) 受渡当事者間の協定によって、炭素当量の代わりに溶接割れ感受性組成を適用してもよい。この場合の溶接割れ感受性組成は、表4 による。溶接割れ感受性組成の計算は、11.1 の溶鋼分析値を用い、式(2)による。
なお、計算式に規定された元素は、添加の有無にかかわらず、計算に用いる。
JIS_G3136_PCM_溶接割れ感受特性組成.jpeg
ここに、
PCM :溶接割れ感受性組成(%)
表4 溶接割れ感受性組成
JIS_G3136_表4_溶接割れ感受性組成.jpeg
6. 機械的性質
6.1 降伏点又は耐力、引張強さ、降伏比及び伸び
鋼材は、11.2 によって試験を行い、その降伏点又は耐力、引張強さ、降伏比及び伸びは、表5による。
6.2 シャルピー吸収エネルギー
厚さ12mmを超える鋼材は、11. 2 によって試験を行い、そのシャルピー吸収エネルギーは表 6 による。 この場合、シャルピー吸収エネルギーは.3個の試験片の平均値とする。
なお.個々の試験結果のうち 1個は、27J 未満になってもよいが、19J 以上でなければならない。
表6 シャルピー吸収エネルギー
JIS_G3136_表6_シャルピー吸収エネルギー.jpeg
6.3 厚さ方向特性
鋼材は、11.3 によって試験を行い、その厚さ方向特性は表 7による。
表7 厚さ方向特性
JIS_G3136_表7_厚さ方向特性.jpeg
表5 降伏点又は耐力、引張強さ、降伏比及び伸び

JIS_G3136_表5_降伏点又は耐力,引張強さ,降伏比及び伸び.jpeg

7. 超音波探傷試験
SN400C 及び SN490C の厚さ16 mm 以上の鋼板及び平鋼は、11.4 の試験を行い、判定は 表8 による。 SN400B及びSN490Bの厚さ 13 mm以上の鋼板及び平鋼は、受渡当事者間の協定によって超音波探傷試験を実施してもよい。その場合、試験は、11.4 によって行い、その判定は表8 による。
表8 超音波探傷試験
JIS_G3136_表8_超音波探傷試験.jpeg
14. 表示
検査に合格した鋼材は、鋼材ごと又は 1結束ごとに、次の項目を適切な方法で表示する。 ただし、受渡当事者間の協定によって、項目の一部を省略してもよい。
a ) 種類の記号(超音波探傷試験を行ったことを示す記号及び熱処理の記号を含む。)
b ) 溶鋼番号又は検査番号
c ) 寸法
d ) 結束ごとの数量又は質量 (鋼板と鋼帯の場合)
e ) 製造業者名又はその略号
JIS G3136:2012

7.2.2 高カボルト
(a) トルシア形高カボルト
トルシア形高カボルトは、JIS形の高力ボルトに形状が似たもので、ボルトの締付けにより、図 7.2.6 に示すように、ボルトのネック部が破断することによりボルトの締付けが確認でき、国土交通大臣の認定が必要である。 機械的性質による種類は、ボルトの等級で代表し、2種の JIS 形高カボルトに相当するものをS10T と記す。その形状を図 7. 2.6 に示す。
図7.2.6_トルシア形高力ボルト.jpg
図 7.2.6 トルシア形高力ボルト
(b) JIS 形高カボルト
(1) JIS に定められている高カボルトであり、詳細については、JIS B 1186(摩擦接合用高力六角ボルト・六角ナット・平座金のセット) の抜粋を参照する。
(2) セットとは、図 7.2.7 の 1組をいう。
図7.2.7_JIS形形高力ボルトのセット.jpg
図7.2.7 JIS形高カボルトのセット
(3) JIS 形高カボルトは、1種、2種及び 3種があるが、1種はほとんど製造されていないこと、3種は遅れ破壊等材質的に多少問題のある場合があるので 「標仕」では 2種に限定している。
(4)機械的性質による種類を、ボルトの等級により代表させることがある。 例えば、2種のボルトを、F10T のボルトと呼ぶ。( 1種は F8T、3 種は F11Tと称す)
(5)トルク係数値による種類はナットの回転しやすさ(締付けやすさ)の種類であり、ナット、ボルトの表面処理によって定めている。通常表面処理にはボンダリューベという処理が行われ、処理のあるものは種類が Aになり、処理してないものは Bになる。
一般に、種類 A・B の使用別径は 20mmを境にして区分し、径の大きいものを Aとして、Bに比べると小さいトルクで締付けが容易に行えるようにしている。
(c ) 高カボルトの日本鋼構造協会規格 JSS 及びJIS の抜粋
(1) JSS Ⅱ 09(構造用トルシア形高カボルト・六角ナット・平座金のセット)の抜粋を次に示す。
JSS Ⅱ 09-1996
1,適用範囲
この規格は、主として鋼構造にセットの温度が 0℃~ 60℃の範囲で使用する構造用トルシア形高カボルト・六角ナット・平座金のセット(以下、セットという。) について規定する。
3,構成及び種類・等級
3.1 構 成
セットの構成は、3.2 に規定する構造用トルシア形高カボルト(以下、ボルトという。)1個、構造用高力六角ナット(以下、ナットという。)1個、構造用高力平座金(以下、座金という。)1 個によって構成する。
3.2 種類・等級
セットの種類・等級は、1種類、1等級とし、セットを構成する部品の機械的性質による等級の組合せは、表1 による。
表1 セットの種類及び構成部品の機械的性質による等級の組合せ
JSS_2_表1_セットの種類及び構成部品の機械的性質による等級の組合せ.jpeg
JSS Ⅱ 09-1996
(2) JIS B 1186(摩擦接合用高力六角 ボルト・六角ナット・平座金のセット) の抜粋を次に示す。
JIS B 1186:2013
1. 適用範囲
この規格は、主として鋼構造に使用する摩擦接合用高力六角ボルト・六角ナット・平座金のセット(以下、セットという。) について規定する。
4 セットの構成及び種類・等級
4.1 セットの構成
セットの構成は.4.2 に規定する摩擦接合用高力六角ボルト(以下、ボルトという。) 1個、摩擦接合用高力六角ナット(以下、ナットという。)1個及び摩擦接合用高力平座金(以下、座金という。)2個によって構成する。
4.2 種類・等級
セットの種類は、セットを構成する部品の機械的性質によって、1種及び 2種とし、さらにトルク係数値によってそれぞれ Aと Bとに分け、セットを構成する部品の等級は、表 2~表5 に示すそれぞれの機械的性質によって決まる。 (表 2 ~ 5省略)
セットの種類及び適用する構成部品の機械的性質による等級の組合せは、表1 による。
表1 セットの種類及び構成部品の機械的性質による等級の組合せ
JIS_B1186_表1_セットの種類及び構成部品の機械的性質による等級の組合せ.jpeg
6. セットのトルク係数値
セットのトルク係数値は、12.4 によって試験したとき、表6に適合しなければならない。 この場合、トルク係数値は、次の式によって求める。
JIS_B1186_トルク係数値.jpeg
ここに
k:トルク係数値
T:トルク(ナットを締め付けるモーメント)(N・m)
d:ボルトのねじ外径の基準寸法(mm)
N:ボルト軸力( N )
表6 セットのトルク係数値
JIS_B1186_表6_セットのトルク係数値.jpeg
11. 潤滑及び防せい(錆)処理
ボルト、ナット及び座金には、それらの品質に有害な影響を与えない潤滑及び防せい(錆)処理を施すことができる。
13. 検査
13.5 セットのトルク係数値検査
セットのトルク係数値検査は、12.4 によって試験を行ったとき、箇条 6に適合しなければならない。 また、この検査では検査ロットの保証品質水準は、次による。
a) 検査ロットのトルク係数値の標準偏差の保証品質水準は、危険率5%以下、相対標準誤差 8%以下とする。 適用に当たっては、工程が安定状態にある場合は、品質管理データ又は検査データを用いてもよい。 また、特に必要がある場合は、受渡当事者間の協定によって、相対標準誤差を規定の値より若干多くとり、サンプルの大きさを少なくしてもよい 。
b) 検査ロットのトルク係数値の平均値の保証品質水準は、表13 に示す値以上とする 。標準偏差は、a) によって求められた値を用いる 。
注 )この検査ロットとは、4.3.5 に示す 1セットロットを指す。
表13 トルク係数値の平均値の保証品質水準
JIS_B1186_表13_トルク係数値の平均値の保証品質水準.jpeg
14. 製品の呼び方
セットの呼び方は、規格番号又は規格名称、セットの機械的性質による種類、セットのトルク係数値による種類、ねじの呼び × ボルトの長さ(ℓ)及び指定事項による。
注)特に指定事項がある場合は、括弧で示す。
JIS_B1186_高力ボルトセットの製品の呼び方.jpeg
15 表 示
15.1 製品の表示
セットの構成部品に関する表示は、次による。
a) ボルト頭部の上面に、次の事項を浮き出し又は刻印で表示しなければならない。
1) ボルトの機械的性質による等級を示す表示記号( F8T 又は F10T )
2) 製造業者の登録商標又は記号
b) ナット上面に、ナットの機械的性質による等級を示す表示記号を、表14 の表示記号を用いて浮き出し又は刻印で表示しなければならない。
なお、受渡当事者間の協定によって、製造業者の登録商標又は記号を表示してもよい。
表14 ナットの表示記号
JIS_B1186_表14_ナットの表示記号.jpeg
c) 座金には、機械的性質の等級を示す記号は、表示しない。
なお、受渡当事者間の協定によって、製造業者の登録商標又は記号を表示してもよい。
15.2 包装の表示
包装には、次の事項を明瞭に表示しなければならない。
a) 規格名称
b) セットの機械的性質による種類
c) セットのトルク係数値による種類
d) ねじの呼ひ × ボルトの長さ(ℓ)
e) 数量
f ) 指定事項
g) 製造業者名又は登録商標
h) セットのロット番号
i ) セットの検査年月
JIS B 1186 : 2013
(d) 溶融亜鉛めっき高カボルト
(1) JIS が定められていないので、建築基準法第 37条に基づく大臣認定を受けた製品を使用する。
(2) 大臣認定を受けた製品は、JIS B 1186 に準拠して製造されており、セットの種類は 1種 (F8T 相当)である。 F 10T やトルシア形のものは製造されていない。
なお、平成25年 8月現在、大臣認定を受けている製造所は、8社 9工場である。
(3) ボルトの材料はF10T 高カボルトに使われているもの(低炭素マルテンサイト系ボロン鋼等)を使用しており、ボルト成形後の熱処理(焼入れ・焼戻し)で焼戻し温度を 500℃程度にして F8T の機械的性質を付与している。 このため、450℃程度のめっき浴で浸漬めっきしても機械的性質が変化しない靭性が高く耐遅れ破壊性の高い高カボルトになっている。
(4) 溶融亜鉛めっきの付着量は、550g/m2(膜厚換算約 80μm) 以上である。
(5) ボルトのねじは、転造した正規の有効径のままとし、めっきの付着による径の量大を考慮して径を細くすることはしない。ナットのねじは、めっきの前にオーバータップして有効径を量大し、めっき後はねじさらいをしない。
(6) 締付けは、ナット回転法(7.12.4 (b)(3)参照)で行うため、トルク係数値の調整のための表面潤滑処理は、めっき後のナットで行う。ただし、やむを得ず頭締めを行う場合は、めっき後のボルトに表面澗滑処理を行い、ナットはめっきのままとするのがよい。 また、ボルト締め用のセットは、製造時に「頭締め用」等とこん包に表示し、「ナット締め用」と区別する必要がある。
なお、「ナット締め用」でボルトの頭締めを行うと、ボルトとナットのとも回りが生じたり、トルク値が高くなり過ぎるなどして、適正な締付けができなくなるので注意する。
7.2.3 普通ボルト
(a) 軽量形鋼構造において普通ボルトを使用することが多い。一般に普通ボルト接合は、小規模な構造物に使用されている。
(b)ボルト及びナットは、「標仕」では、JIS による鋼製六角ボルト及びナットで、仕上程度が中、ねじの等級が 6g (ボルト)、6H(ナット)の規格に合うものであれば、強度区分は、ボルト4.6 以上、ナット5 以上のいずれを用いてもよい。
ナットの形状は通常JIS B 1181 (六角ナット)の区別 1・2 ・4 種のどれでもよい。なお、戻止めには 3種を用いてもよい。 また、強度区分の高いボルト及びナットを溶接により戻止めする場合には、使用する溶接材料等で溶接割れが生じる場合があるので注意する。
(c)「鋼材等及び溶接部の許容応力度並びに材料強度の基準強度を定める件」(平成12年12月26日 建設省告示第 2464 号)では、強度を必要とするボルトには JIS B 1051(炭素鋼及び合金鋼製締結用部品の機械的性質ー 第1部:ボルト、ねじ及び植込みボルト)によるボルトを使用することとなっている。その他、国土交通大臣が認定したボルト又は国土交通大臣が基準強度を指定したボルトを使用することとなっている。
7.2.4 アンカーボルト
アンカーボルトの材質の種類は通常設計図書に指定されるが、ねじ、ナット及び座金は、特別な指定がないことが多い。 その場合は六角ボルトに相当するものを用いる。
なお、完成後構造的に耐力等を期待するものを構造用アンカーボルトと称し、建方用にのみ用いるものを建方用アンカーボルトと称する。
(一社)日本鋼構造協会では平成 12 年に伸び能力を有する建築構造用アンカーボルトの規格として、JSS II 13(建築構造用転造ねじアンカーボルト・ナット・座金のセッ ト)及びJSS II 14 (建築構造用切削ねじアンカーボルト・ナット・座金のセット)を制定している。また、アンカーボルトのJIS 規格としては、JIS B 1220(構造用転造両ねじアンカーボルトセット)と JIS B 1221(構造用切削両 ねじアンカーボルトセット) が平成22年 10 月に制定されている。構造設計上の必要に応じて特記される場合があるので注意する。
7.2.5 溶接材料
(a) 溶接材料は、溶接方法 ( 7.6.1参照 )あるいは鋼材の種類により種々なものが用いられているが、「標仕」に直接関連のある材料のうち、主なものを次に挙げる。
なお、2001年の日本工業標準調査会(JISC)の「標準化戦略」におけるISO整合化 JIS改正指針を受けて、溶接材料についても ISO整合化JIS改正作業が行われた。今回の改正で、溶接材料の引張強さの単位が、鋼材のJISの場合と異なり、MPa( = 1N/mm2)で表示されたことに注意が必要である。
溶接材料は鉄骨製作工楊で使いなれたものが無難であり、良質で当該溶接に適したものであれば選定は鉄骨製作工場に任せるのがよい。また、溶接材料は種々の特徴があるので、選定に当たっては鋼種、板厚、継手の種類、溶接姿勢、作業性、能率性等を総合して、これらの特徴を生かし正しく選ぶ必要がある。
(1) 被覆アーク溶接
被覆アーク溶接棒のJISは、JIS Z 3211(軟鋼用被覆アーク溶接棒)とJIS Z 3212 (高張力鋼用被覆アーク溶接棒)が統合一本化され、2008年にJIS Z 3211(軟鋼、高張力鋼及び低温用鋼用被覆アーク溶接棒)として改正された。
軟鋼用被覆アーク溶接棒は種々な特徴をもっているが、表 7.2.5 に溶接性、作業性及び能率性からみた溶接棒の選び方の例を示す。
高張力鋼用被覆アーク溶接棒としては、拡散性水素による遅れ割れの発生防止の観点から、国内では低水素系溶接棒が使用されてしいる。
表7.2.5 溶接棒の溶接性、作業性、能率性からみた選び方の例
表7.2.5_溶接棒の溶接性,作業性,能率性絡みた選び方.jpeg
JIS Z 3211 : 2008 の溶接棒の種類の区分記号の表し方を図 7.2.8 に示す
図7.2.8_JIS_Z_3211-2008_溶接棒の種類の区分記号.jpg
図7.2.8 JIS Z 3211 : 2008 の 溶接棒の種類の区分記号
(2) ガスシールドアーク溶接
ガスシールドアーク溶接用ワイヤのJIS は、ソリッドワイヤについては、JIS Z 3312 (軟鋼及び高張力鋼用マグ溶接ソリッドワイヤ)が 新名称「 軟鋼、高張加鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ」として 2009年に改正され、フラックス入りワ イヤについても、JIS Z 3313(軟鋼、高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ)が同じく 2009年に改正された。
JIS Z 3312 の溶接ワイヤの種類の新旧対照を表7.2.6 に、JIS Z 3312: 2009の溶接ワイヤの種類の区分記号の表し方を図7.2.9 に示す。
なお、低温用鋼は、建築の鉄骨工事ではほとんど使われないので省略した。
表7.2.6 JIS Z 3312の溶接ワイヤの種類の新旧対照
表7.2.6_JIS_Z_3312溶接ワイヤの種類の新旧対照.jpg
図7.2.9_JIS_Z_3312-2009_溶接ワイヤの種類の区分記号.jpg
図 7.2.9 JIS Z 3312 : 2009の溶接ワイヤの種類の区分記号
JIS Z 3313 の溶接ワイヤの種類の新旧対照を表7.2.7 に、JIS Z 3313 : 2009 の溶接ワイヤの種類の区分記号の表し方を図7.2.10 に示す。
なお、低温用鋼は、建築の鉄骨工事ではほとんど使われないので省略した。
表7.2.7 JIS Z 3313 の溶接ワイヤの種類の新旧対照
表7.2.7_JIS_Z_3313溶接ワイヤの種類の新旧対照.jpg
図7.2.10_JIS_Z_3313-2009_フラックス入り溶接ワイヤの種類の区分記号.jpg
図 7.2.10 JIS Z 3313 : 2009のフラックス入り溶接ワイヤの種類の区分記号
JIS Z 3312 のソリッドワイヤは普通の針金状のもの、JIS Z 3313のフラックス入りワイヤは 外皮金属の内部にフラックスが充填されているものである。
シールドガスは、一般には、炭酸ガス(CO2 100%)、アルゴンガス (Ar 100%)及び炭酸ガスとアルゴンガスを混合したものが使用されている。使用されるガスの JIS としては、JIS Z 3253 : 2011( 溶接及び熱切断用シールドガ ス)が 2003年に制定されて以降、これが一般化されつつある。 当該JISでは、炭酸ガスについては、種類 C1 が使用されている。しかし、JIS Z 3253 制定以前から使用されているJIS K 1106(液化二酸化炭素(液化炭酸ガス))の 3種を、現在も使用しているところがある。 参考として、両方の JIS の炭酸ガスの品質を表7.2.8 及び表7.2.9 に示す。
表7.2.8 JIS K 1106 の品質(JIS K 1106:2008)
表7.2.8_JIS_K_1106の品質(JIS K 1106-2008).jpg
表7.2.9 JIS Z 3253 の品質(JIS Z 3253:2011)
表7.2.9_JIS_Z_3253の品質(JIS Z 3253-2011).jpg
(3) セルフシールドアーク溶接
この溶接法は建築の鉄骨工事ではほとんど使われていないが、2009年にセルフシールドアーク溶接用のワイヤの JIS (JIS Z 3313) が改正されている。 一般に、セルフシールドアーク溶接用のワイヤは薄鋼板を折り曲げ、その中に脱酸剤や脱窒剤等の溶剤(フラックス)を充填成形したものであり、シールドガスなしで溶接できる。心線の径は、交流用では 3.2mm、直流専用では 2.0mm以下のものが適用される。このワイヤには脱酸、脱窒剤が多量に添加されているため、多量のヒュームが発生し、通風の悪い場所では溶接線が見えにくく、人体への影響がある。
(4) サブマージアーク溶接
サブマージアーク溶接では、ワイヤとフラックスの組合せにより様々な性質の溶接金属を作り出すことができる。 そのため、JIS Z 3183(炭素鋼及び低合金鋼用サブマージアーク溶着金属の品質区分)の規定には、溶着金属の品質区分(機械的性質及び化学成分)及び試験方法が定められており、溶接を行う鋼種、要求される機械的性質に応じて、 ワイヤとフラックスの組合せ時の溶着金属の機械的性質をこの品質区分により選定して使用されている。
建築基準法では溶着金属強度の記載がある JIS Z 3183が指定建築材料として規定されているが、実際の溶接は JIS Z 3183 の引用規格である JIS Z 3351に規定されている炭素鋼及び低合金鋼用サブマージアーク溶接ソリッドワイヤと JIS Z 3352 に規定されているサブマージアーク溶接用フラックスを用いて行われる。そのため「標仕」では、JIS Z 3183 のほかに 指定建築材料ではないが JIS Z 3351 及び JIS Z 3352 も記載している。
(5) エレクトロスラグ溶接
エレクトロスラグ溶接用材料としては、JIS Z 3353(軟鋼及び高張力鋼用のエレクトロスラグ溶接ワイヤ及びフラックス)の規定により、ワイヤ、フラックス、消耗ノズルの分類が示されている。溶接金属の機械的性質は、使用するワイヤの種類別により規定されており、機械的性質が満足されれば組み合わせるフラックスの種類は特定されない。
なお,国土交通大臣認定によるエレクトロスラグ溶接材料もある。
エレクトロスラグ溶接は高能率な立向き自動溶接施工法で、主にボックス柱のスキンプレートとダイアフラムとの溶接に用いられる。
(6) 耐火鋼材、耐候性鋼材等の特殊な鋼材には、それぞれ鋼材に応じた溶接材料がつくられている。これらの鋼材に応じた溶接材料にも、被覆アーク溶接及びガスシールドアーク溶接の場合において、JIS は適用される。
(b) 頭付きスタッド
建築構造物において頭付きスタッドが多く使われており、その材質や形状は JIS B 1198(頭付きスタッド)で規定されている。
7.2.6 ターンバックル
建築用ターンバックルは JIS A 5540(建築用ターンバックル)に規定されており、ターンバックルは胴1個とボルト2個とから構成されている。 胴は JIS A 5541(建築用ターンバックル胴)に、ボルトは JIS A 5540に規定されており、胴とボルトの組合せは、JIS に示す同一製品とする。
7.2.7 デッキプレート
(a) 構造床として使用するデッキプレートについては、デッキプレート版に関する告示(平成14年国土交通省告示第 326号)に規定されており、その基準解説書である国土交通省国土技術政策総合研究所他「デッキプレート版技術基準解説及び設計・計算例」 及び設計マニュアルである(独)建築研究所監修「デッキプレート床構造設計・施工規準」を参考にするとよい。
(1)この「規準」は、第 Ⅰ 編「デッキプレートとコンクリートとのデッキ合成スラブ」、第Ⅱ編「デッキプレートと鉄筋コンクリートとのデッキ複合スラブ」及び第Ⅲ編「デッキプレートをそのまま構造体としたデッキ構造スラブ」で構成されており、デッキプレートは主要な構造材として規定されている。
なお、「標仕」では、名称を基準解説書に合わせて、第 I 編のデッキプレートを「デッキプレート版(デッキプレートとコンクリートとの合成スラブとする構法)」、第Ⅲ編のデッキプレートを「デッキプレート版(デッキプレート単独の構法)」としている。
(ⅰ) 主として、床又は屋根構造に使用する。
(ⅱ) 対象とするデッキプレートは、JIS G 3352(デッキプレート)の規定を満足するものとする。
(ⅲ) 原則として、板厚は 1.0mm以上(ただし、デッキ複合スラブの場合は、0.8mm以上)としている。
(ⅳ) 許容応力度は、平成 12年建設省告示第2464号に規定されているF値によっているが、一部高強度材料については、幅厚比より求まる有効幅の取り方を簡便にするため、235N/mm2 以下で適用することにしている。
(v) 合成スラブ構造には、(一社)日本建築センター等により、告示第326号に定めるデッキプレート版に適合していることについて、任意の評定を取得している製品がある。
(2) 材料の品質確認は製造業者の品質証明書(使用鋼材の試験成績表、亜鉛の付着量等)によって行う。
(b) デッキプレートを主要構造材として用いた床スラブの耐火設計については、「デッキプレート床構造設計 ・施工規準」 を参考にするとよい。
(1) デッキ合成スラブ床では、耐火被覆のいらない連続支持合成スラブ及び単純支持合成スラブが耐火構造認定仕様として一般に使用されている。
(2) これら認定仕様では、スパン、許容積載荷重、コンクリート厚さ、溶接金網、デッキタイプ等の仕様が認定条件として定められているので、これに従って監理を行う。合成スラブ工業会「合成スラブの設計・施工マニュアル」を参考にするとよい。
(3) デッキ複合スラブ床は、平成12年建設省告示第 1399号に示されている例示仕様があり、この仕様では、デッキプレートの溝に配する鉄筋のかぶり厚さは 31mm以上、コンクリート厚さは、100mm以上(2時間)、70mm以上(1時間)となっている。この例示仕様に該当しないコンクリート厚さのもので、床2時間耐火構造の認定を取得したものがあるが、個別に仕様を確認する必要がある。
(4) デッキ構造スラブ床では、認定仕様である「吹付けロックウール被覆耐火構造(FP060FL- 9128 :15mm以上、FP120FL- 9129:20mm以上)」がよく使用される。
(5) このほか、デッキプレート単体で屋根30分耐火認淀構造のものもあるが、個別に仕様を確認する必要がある。
(c) 床型枠用鋼製デッキプレートは、6.8.3 参照のこと。
7.2.8 レール
(a) 「標仕」では、主として天井クレーン走行用に使用するレールを想定している。
(b) レールの種類は、JIS E 1101(普通レール及び分岐器類用特殊レール)及び JIS E 1103(軽レール)で、レール1m当たりの質量に相当する呼称で分類している。その種類を表7.2.10 及び 11に示す。
(c) レールの種類は、クレーンの定格荷重等によって選ばれ、設計図内で指定される。
(d) 材料の品質は、JISマーク表示か規格品証明書確認する。(7.2.10(a)参照)
表7.2.10 普通レールの種類(JIS E 1101:2012)
表7.2.10_普通レールの種類(JIS_E_1101-2012).jpg
表7.2.11 軽レールの種類(JIS E 1103:1993)
表7.2.11_軽レールの種類(JIS_E_1103-1993).jpg
7.2.9 柱底均しモルタル
(a) 柱底均しモルタルに使用される材料は、左官工事で一般に使用されるセメントや細骨材が用いられる。
(b) ベースプレートが大きい場合等では、施工性の良さ等から鉄骨柱下無収縮モルタルが用いられることが多い。
(1) 「標仕」では、無収縮モルタルは、品質や施工性等を考慮して特記することとしている 。
(2) (一社)公共建築協会では、建築材料・設備機材等品質性能評価事業(1.4.4 (e)参照)の一環として、無収縮モルタルの品質・性能等に関する評価基準を定め、これに合格する材料を評価しているので、材料の選定に当たってはこれらが参考となる。
7.2.10 材料試験等
(a) 適用範囲
(1)鋼材
(ⅰ) 鋼材の品質基準は、「建築物の基礎、主要構造部等に使用する建築材料並びにこれらの建築材料が適合すべき日本工業規格又は日本農林規格及び品質に関する技術的基準を定める件」(平成12年5月31日 建設省告示第1446号)に定められている。そこでは、形状・寸法・外観等のほか、引張試験における降伏点又は 0.2バーセント耐力の上下限・降伏比・引張強さ及び伸び、化学成分、炭素当量あるいは溶接割れ感受性組成.シャルピー吸収エネルギー等の基地値が定められていることが要求されている。
(ⅱ) JIS 規格品には、規格品証明書(ミルシート、検査証明書、試験成績等)が添付される。規格品証明書は、JISに基づいて行った管理試験及び検査の結果を記載した品質の保証書である。図7.2.11に規格品証書の例を示す。
規格品証明書には、溶鋼番号(製鋼番号、鋼番、チャージナンバー等)が記載されているので、鋼板形鋼等に表示されている溶鋼番号と対照して当該鋼材の規格品証明書であることを確認することができる。
図7.2.11_規格品証明書の例.jpg
図7.2.11 規格品証明書の例
なお、SN材は、7.2.1(b)(9)に示すように鋼材表面に識別マーク、あるいは鋼種が印字してあるので、切断後でも SN材であるか否かは、証明書がなくても判別できることになっている。
規格品証明書は原本とする。使用量が少ないなどやむを得ない場合は、その写しでもよいが、写しが当該鋼材と整合していることを保証した会社の社名・社印、保証責任者の氏名・押印及び日付の明示されているものでなければならない。流通が多岐にわたる場合には、写しの都度これが必要とされる。
1999年11月に鋼材の新しい品質保証システムが、(一社)日本鋼構造協会の「建築鉄骨品質管理機構」から提案され、「標仕」7.2.10(b)では、これによる「鉄骨工事使用鋼材証明書」を規格品証明書に代えて用いることもできるとしていた。しかし、建築鉄骨品質管理機構では、より信頼性を高める方法の検討を行い、2009年12月に「建築構造用鋼材の品質証明ガイドライン」を発行した。そのため、「鉄骨工事使用鋼材証明書」は廃止された。本ガイドラインでは、JIS規格等の適合性証明は、原則として、「鉄骨工事使用鋼材等報告書」によるとしているので、「標仕」でいう 「その他規格を証明できる書類」とは、「建築構造用鋼材の品質証明ガイドライン」の「鉄骨工事使用鋼材等報告書」と考えてよい。(7.1.2(a)参照)
(ⅲ) 鋼材の機械的性質等を特記した場合等、材料試験等によりその性能を確認する必要がある場合には、試験項目、方法等に応じて相応する規格の規定により鋼材の適否を判定する。
(ⅳ) 建築鉄骨では、鋼材の板厚方向に力が作用する部位(通しダイアフラム、溶接組立箱形断面柱のスキンプレート等)がある。それらの当該箇所に使用される鋼材の板厚方向の性能において、板厚方向の強度及び鋼材の内部品質(板厚内の傷の有無)が必要とされる場合がある。JIS G 3136(建築構造用圧延鋼材)(SN材)のC種は、このような部位に使用することを想定し、次の二つが規定されている。
① 板厚方法の強度:板厚方向(Z方向)の引張試験で絞り値が規定されている。
② 板厚内の内部品質:超音波による検査が規定されており、JIS G 0901(建築用鋼板及び平鋼の超音波探傷試験による等級分類及び判定基準)で行うとなっている。
一方、SM材や SS材等にはこれらについての規定がないため、内部品質確認が必要とされる場合の試験方法として JIS G 0901が適用される。 板厚方向の引張強度について試験を必要とされることは極めて少ないため、規定する必要はないとし、「標仕」では、板厚方向に引張力を受ける鋼板の試験が必要とされた場合は、「JIS G 0901により、適用は特記による。」としている。
(2)溶接材料
溶接材料の規格は、そのこん包容器及びワイヤリール等に表示されているので、これより「標仕」7.2.5 に規定する適切な溶接材料であることが確認できる。「鉄骨造の継手又は仕口の構造方法を定める件」(平成12年 5月31日 建設省告示第1464号)では溶接される鋼材の種類に応じて溶着金属としての性能(降伏点又は 0.2パーセント耐力及び引張強さ)が定められており、これに適合していることを確認する意味からも、必要に応じて、試験成績表あるいは化学成分表の提出を求めるのがよい。
(b) 試験方法及び試験片
鋼材の試験方法については、JIS G 0404 (鋼材の一般受渡し条件)、JIS Z 2241(金属材料引張試験方法)、JIS Z 2242(金属材料のシャルピー衝敷試験方法)にそれぞれ引張及び衝撃試験方法が定められている。
試験片についても、JIS Z 2241、JIS Z 2242にそれぞれ材料に応じた試験片が定められている。
その他、ボルト、リベット等のような特殊な材料の試験についてはそれぞれのJISに定められている。 また、化学成分の分析試験についてもそれぞれ JISが定められている。
(c) 材料試験関係用語
(1)JIS Z 2241に定められている用語の意味(JIS G 0202(鉄鋼用語(試験))参照)
(ⅰ) 降伏点とは、引張試験の経過中において生じる上降伏点及び下降伏点の総称。紛らわしくないときには、上降伏点を単に降伏点と呼ぶことがある。
上降伏点とは、引張試験の経過中、図7.2.12 に示すように試験片平行部が降伏し始める以前の最大荷重を平行部の原断面積で除した値をいう。
下降伏点とは、引張試験の経過中、図7.2 12 に示すように試験片平行部が降伏し始めた後のほぼ一定の荷重状態における最小の荷重(慣性効果によるものを除く。)を平行部の原断面積で除した値いう。
図7.2.12_降伏点.jpg
図7.2.12 降伏点
(ⅱ) 耐力とは、引張試験において,規定された永久伸びを生じるときの荷重を平行部の原断面積で除した値をいう。降伏点が明瞭でない材料では、その代わりに耐力が用いられる。JISでは、特に規定のない場合は、永久伸びの値を0.2% としている。
(ⅲ) 最大引張荷重とは、引張試験の経過中、試験片の耐えた最大荷重をいう。
(ⅳ) 引張強さとは、最大引張荷重を平行部の原断面積で除した値をいう。
(v) 永久伸びとは引張試験において、ある荷重を加え、次にこれを除去した後における標点間の長さと標点距離との差の標点距離に対する百分率をいう。
(vi) 破断伸びとは、試験片破断後における永久伸びをいう。紛らわしくないときには、単に伸びと呼ぶことがある。
(ⅶ) 絞りとは、引張試験において、試験片破断後における最小断面積とその原断面積との差の原断面積に対する百分率をいう。
(2) 鋼材の硬さ
測定方法は、通常次の3種類が用いられ、それぞれJISが定められている。
① ブリネル硬さ
超硬合金球の圧子を用い,試験面に球面形のくぼみをつけたときの荷重をくぼみの直径から求めたくぼみの表面積で除した値をいい、記号HBWで表す。
JIS Z 2243(ブリネル硬さ試験一試験方法) が定められている。
② ビッカース硬さ
対面角が 136度のダイヤモンド四角すい圧子を用い、試験面にくぼみをつけたときの試験力をくぼみの表面積で除した値をいい、硬さ値、硬さ記号の順に表示し、例えば、硬さ値が640で試験力 294.2Nでは、640HV30のように表す。
JIS Z 2244(ビッカース硬さ試一験試験方法)が定められている。 荷重が変わっても、硬さの数値は変わらないという特徴がある。くぽみが微細なので溶接部の硬さ分布を測るのに用いられる。
③ ロックウェル硬さ
円すい角が 120度のダイヤモンド圧子を用い、試験面に押し込み、その深さから算出する。試験力 1471Nの場合をCスケールといい記号HRCで表す。
なお、鋼球又は超硬合金球の圧子を用い、試験 980.7Nの場合をBスケールといい、記号HRBで表す。
JIS Z 2245(ロックウェル硬さ試験一試験方法)が定められている。

7章鉄骨工事 3節工作一般

第7章 鉄骨工事
3節 工作一般
7.3.1 適用範囲
本節は、鉄骨の製作に係る工作一般、製作精度及び製品検査を対象としている。
7.3.2 工作図
(a) 工作図
(1) 工作図は、設計図書の内容を実現するに当たり製作・建方における指示書的な役割を果たすものであり、設計図書の記載内容を正しく織り込み、製作・建方が可能であることを確認したものでなければならない。施工性や構造細部の納まりの確認が工作図のみで困難な場合は現寸図・模型等を補助的に作成し確認する。
(2) 「標仕」1.2.3 (a)では、施工図等(工作図を含む。)については監督職員の承諾を受けることとしているので、鉄骨の製作・建方の工程に支障がでないように提出させる。
(3) 工作図は、監督職員・受注者等・鉄骨製作工場が協議確定した設計図書に関する疑義事項及び施工の手段・手法に関する提案事項を反映したものとする。
(4) 工作図は、軸組図・伏図・柱詳細図・梁詳細図・継手基準図、溶接基準図等で構成し、記載内容は次のとおりである。
i) 鉄骨部材の詳細な形状・寸法・材質・製品数量・製品符号
(ii) 溶接及び高カボルト接合部の形状・寸法・ボルトの種類・等級・継手符号
(iii) 設備関係・内外装関係付属金物、仮設金物、コンクリート関係・鉄筋関係孔、ファスナー類
(5) 工作図の検討事項は、次のとおりであり、工場製作や工事現場施工においてトラブルが生じないように十分な検討を行う。
(i) 柱・梁・工場組立部材等の符号(建物の通り符号を利用する場合や通し番号による場合が多い。)
(ii) 建物の基準線と鉄骨の基準線との関係
(iii) スパン(梁間)、階高等の基準寸法・基準線と柱・梁・工場組立部材等との位置関係、床からベースプレート下端までの寸法
(iv) 柱・梁・工場組立部材等の形状・寸法及び構成部材の形状・寸法
(v) 各部の部分的詳細
①柱と梁の取合い
② ベース回りの納まり
③ スリーブ貫通部の補強等、また、隣接部材の接近のために、作業空間が狭く、ボルト締付け・溶接等の作業が困難な箇所の発見と処置
(iv) 接合部の添え板(スプライスプレート)・フィラープレート・クリアランス等及び次の①から④の事項に関する設計図書との照合
① 高カボルトの種類・径・本数・ゲージ・ボルト間隔・最小縁端距離等
② 溶接の種類・開先形状・大きさと寸法・長さ・位置等
③ アンカーボルトの種類・径・長さ・本数・位置等
④ SRC造の場合の鉄筋工事との関係
また、高カボルト及び普通ボルトの縁端距離等を確認する場合は(c)(4)~(6)を参照する。
(vii) 他の建築工事との関連
① 内外装材料との関係
② 建具類の埋込み金物の納まり、特にフロアーヒンジ・シャッターケース等
③ コンクリートの充填性を考慮した空気孔の設置等
④ SRC造の場合の鉄筋工事との関係
(ⅷ) 仮設工事との関連
① クレーンの設置、重量物の積載、風・地震に対する倒壊防止、土圧に対する支持等のために鉄骨を補強する場合は、設計担当者と打ち合わせる。
② 安全タラップ・吊りピース・足場用ピース・建入れ直し用ピース・親綱掛け用ピース等の仮設用金物の必要性
③ ウェブ板厚が薄く、溶接・運搬・建方の際に変形のおそれがある場合、溶接組立上必要な場合、又は施工上タラップとして必要な場合を除き、原則としてバンドプレートは取り付けない。
(ix) 設備工事との関連
① 主に、スリーブ位置、大きさ及び間隔の確認をする。(構造耐力上の制約についても確認する。)
② ダクト、配符等の系統を確認し、スリーブの数、大きさ等が不足しないようにする。
③ 鉄骨の近くで交差する配管等の系統は、保温被覆材を含めて、施工性を確認する。
④ 排水管等一定の勾配を必要とするもの、柱・梁の近くで方向を変えるものは特に注意する。
⑤ ウェブ貫通孔板厚部分の耐火被覆材の厚さと保温被覆材を考慮した配管径の関係を確認する。
(b) 現 寸
(1) 鉄骨製作工場では、工作図のみでは不足する製作情報を作業者に伝える手段として、また、工場製作の能率向上を目的に現寸作業を行う。この現寸作業では、実物と同一寸法の定規(シナイ)・型板(フィルム)を作成する。一般には定規・型板の作成は、完備されている工作図から直接読み取り、作業をする方法が採用されており、標準的形状の建築物の場合、実物大の床書き現寸図については、通常作成する必要はない。
(2) 次のような場合は床書き現寸図やCADシステムから出力される実寸大のフィルムで作業性等を検討するのがよい。
(i) 曲率や90° 以外の取合い角度を有する変形した建築構造物の場合
(ii) 溶接作業及び高カボルトの締付けが困難と判断される箇所が存在する場合
(iii) 納まりが複雑で工作図からの直接読取りが困難な箇所が存在する場合
(3) NC(数値制御)加工装置を用いてけがき・切断・孔あけを行う場合は、定規・型板の作成に代わって、加工データが作成される。
(c) 「標仕」7.3.2 (b)では、高カボルト、普通ボルト及びアンカーボルトの縁端距離、ボルト間隔、ゲージ等は特記事項となっている。参考として、高力ボルト及び普通ボルトのゲージ、ボルト間隔、最小縁端距離等の標準を(1)から(6)までに示す。
(1) ボルトの表示記号の例を表7.3.1に示す。
表7.3.1 ボルトの表示記号の例
表7.3.1_ボルトの表示記号の例.jpeg
(2) ボルト孔の径を表7.3.2に示す。(「標仕」表7.3.2参照)
表7.3.2 ボルト孔の径 (単位:mm)
表7.3.2_ボルト孔の径.jpeg
(3) 高カボルトの締付け長さに加える長さを表7.3.3に示す。(「標仕」表7.2.2参照)
表7.3.3 高力ボルトの締付け長さに加える長さ (単位:mm)
表7.3.3_高力ボルトの締付け長さに加える長さ.jpeg
(4) 縁端距離及びボルト間隔を表7.3.4に示す。
表7.3.4 縁端距離及びボルト間隔(単位:mm)
表7.3.4_縁端距離及びボルト間隔.jpeg
(5) 千烏打ちのゲージ及びボルト間隔を表7.3.5に示す。
表7.3.5 千烏打ちのゲージ及びボルト間隔(単位:mm)
表7.3.5_千鳥打ちのゲージ及びボルト間隔.jpeg
(6) 形鋼のゲージ及びボルトの最大軸径を表7.3.6に示す。
表7.3.6 形鋼のゲージ及びボルトの最大軸径
表7.3.6_形鋼のゲージ及びボルトの最大軸径.jpeg
(7) (4)から(6)までの値は標準であり、高カボルト及び普通ボルトの縁端距離を変更する必要がある場合は、「鉄骨造の継手又は仕口の構造方法を定める件」(平成12年5月31日 建設省告示策1464号)に規定される値を下回らないようにしなければならない。
アンカーボルトの縁端距離は、「鉄骨造の柱の脚部を基礎に緊結する構造方法の基準を定める件」(平成12年5月31日 建設省告示第1456号)に定められているので、変更を行う場合はこの規定値を下回らないようにしなければならない。
(i) 図7.3.1のように配置されたボルトは、締付け機器の形によって、標準ピッチのままでは締付け機器が直角方向のボルトに当たって施工困難となることがある。
(ii) 部材が接近している場合には、締付け機器が入らないとか、トルクレンチのような長い締付け機器が動かせないことがある。(図7.3.2参照)
図7.3.1_直交するボルトの締付け.jpeg
図 7.3.1 直交するボルトの締付け
図7.3.2_締付け機器の大きさの検討.jpeg
図 7.3.2 締付け機器の大きさの検討
7.3.3 製作精度
鉄骨の製作にかかる精度及び製品精度は、「標仕」7.3.3では、JASS 6付則6[鉄骨精度検査基準]によるとしている(7.13.1参照)。
なお、JASS 6では次に示すものには適用しないとしている。
(1) 特記による場合または工事監理者の認めた場合
(2) 特に精度を必要とする構造物あるいは構造物の部分
(3) 軽微な構造物あるいは構造物の部分
(4) 日本工業規格で定められた鋼材の寸法許容差
(5) その他、別に定められた寸法許容差
7.3.4 けがき
けがきは、工作図又は型板・定規等により、加工・組立時の情報を直接鋼材上に記入する作業である。
一般に墨差し・水糸等を用いるが、目的に応じけがき針・ポンチ・たがねを使用することもある。最近では、自動けがき装置が使用される場合もある。
しかし、けがき作業に使用するポンチやたがね等による打痕は、応力集中を招くことから鋼材の耐力を著しく低下させる原因となる。そのため「標仕」7.3.4(b)では、溶接により溶融する箇所又は切断、切削及び孔あけにより除去される箇所を除き、高張力鋼、曲げ加工される外側へのポンチによるけがきやたがね等で傷をつけることを禁止している。
けがき寸法は、製作中に生ずる収縮や変形等を考慮した値とする。また、あと工程の作業者に製作情報が正確に伝わるように、工事名略号、材質、加工情報等が明瞭に記入されていなければならない。
7.3.5 切断及び曲げ加工
(a) 素材切断面の直角度の許容差は、JASS 6付則6付表(11)による。(7.13.1参照)
(b) 切断方法には次のようなものがある。
(1) 機械切断法
(i) せん断によるもの
切断速度は速いが、短所として切断面でのまくれ・かえり等の発生、板の変形、切断面の硬化等の問題があり、「標仕」7.3.5 (a)(3)では適用範囲を13mm以下に限定し、更に主要部材の自由端及び溶接接合部への適用を禁止している。
なお、主要部材の自由端とは、梁や柱のフランジのへり等である。
(ii) 切削によるもの
切断線を削りとることで切断する方法で、次の方法がある。
1) のこぎり切断によるもの
バンドソーやコールドソーがあり、前者は切断速度はやや速く精度はよく斜め切りができ、後者は切断速度は近いが高い精度が得られる。
2) 砥石切断によるもの
切断速度は速く、丸鋼、角鋼、軽量形鋼等の切断に用いられる。
(2) ガス切断法
鉄と酸索の急激な化学反応を利用した切断法であり、機器としては手動ガス切断機、自動ガス切断機。形鋼切断機、鋼管切断機、フレームプレーナ、NC切断機等がある。また、手動ガス切断機にアタッチメント、ガイドを取り付け半自動装置として使用することもできる。切断速度は遅いが、最もよく使用されている。切断面の精度も良く、経済的である。
(3) プラズマ切断法
プラズマアークの熱及び気流を利用した切断法であり、適用板厚は0.5~50 mm程度である。切断速度は速いが切断溝幅が大きい。
(4) レーザー切断法
光エネルギーの集光熱による切断法であり、適用可能板厚は 0.1~25mm程度である。高速切断が可能で切断溝幅が狭く孔あけ加工が可能である。
(c) 切断面の許容差は、JASS 6付則6付表1 (9)・(10)による。(7.13.1参照)凹凸、ノッチ等の不良箇所はグラインダー等で修正する。特にやむを得ない理由から手動でガス切断した場合には、切断面の精度を確保することが困難であるため、注意する必要がある。
(d) 切断面のうちメタルタッチが指定されている部分は、フェーシングマシン又はロータリープレーナ等の切削加工機を使用し、仕上げ加工面が50μmRz程度、直角度が 1.5/1,000 以下になるように平滑に仕上げる。
(e) 切断加工(シャーリング工場での切断材も含む。)後の鋼材の材質確認は、識別色、識別マークの表示、あるいはマーキング(7.2.1 (b)(9)参照)による。
なお、JIS G 3136(建築構造用圧延鋼材)によるSN材の識別は、7.14.3 [ SN鋼材材質識別表示記号・位置及び鋼材の識別表示標準]によることもできる。
(f) 曲げ加工は鋼材の機械的性質等を損なわない方法で行う。次に示す平成12年建設省告示第2464号では、500℃以下の加熱、厚さ 6mm以上の鋼材等(鋳鉄及び鉄筋を除く。)の曲げ加工においては外側曲げ半径が材厚の10倍以上の場合は加工前後で同じ基準強度及び材料強度としてよいとしている。したがって、この範囲外で曲げ加工を行う場合は、加工後の機械的性質等が加工前の機械的性質等と同等以上であることを確認しなければならない。
ただし、200~400℃の範囲は青熱脆性域といわれ鋼材が常温よりもろくなる。加熱曲げ加工を行う場合はこの範囲を絶対に避けなければならない(図7.2.3参照)。
鋼材等及び溶接部の許容応力度並びに材料強度の基準強度を定める件
(平成12年12月26日 建設省告示第2464号 最終改正 平成19年5月18日 )
第1 鋼材等の許容応力度の基準強度
一 鋼材等の許容応力度の基準強度は、次号に定めるもののほか、次の表の数値とする。
 (表省略)
二 建築基準法第37条第一号の国土交通大臣の指定するJISに適合するもののうち前号の表に掲げる種類以外の鋼材等及び同条第二号の国土交通大臣の認定を受けた鋼材等の許容応力度の基準強度は、その種類及び品質に応じてそれぞれ国土交通大臣が指定した数値とする。
三 前2号の場合において、鋼材等を加工する場合には、加工後の当該鋼材等の機械的性質、化学成分その他の品質が加工前の当該鋼材等の機械的性質、化学成分その他の品質と同等以上であることを確かめなければならない。ただし、次のイからハまでのいずれかに該当する場合は、この限りでない。
イ.切断、溶接、局部的な加熱、鉄筋の曲げ加工その他の構造耐力上支障がない加工を行うとき。
ロ.摂氏500度以下の加熱を行うとき。
ハ.鋼材等(鋳鉄及び鉄筋を除く。以下ハにおいて同じ。)の曲げ加工(厚さが6mm以上の鋼材等の曲げ加工にあっては、外側曲げ半径が当該鋼材の厚さの10倍以上となるものに限る。)を行うとき。
第2 溶接部の許容応力度の基準強度
(省略)
第3 鋼材等の材料強度の基準強度
一.(省略)
二.(省略)
三.第1第三号の規定は、前2号の場合に準用する。
第4 溶接部の材料強度の基準強度
 (省略)
(g) 曲げると外側は伸び、内側は縮むが、形鋼のようなものは曲げ角度が大きくなるとその影響が著しくなるので図7.3.3のように切曲げとするのがよい。ただし、曲げ半径は (f) による。
図7.3.3_形鋼の切曲げ加工.jpeg
図7.3.3 形鋼の切曲げ加工
(h) H形断面材の材端部の開先、スカラップ加工は.7.6.4(a)及び7.6.5 (b)による。
7.3.6 ひずみの矯正
(a) ひずみの矯正は、常温若しくは局部加熱して行う。
(b) 400N/mm2、490N/mm2 級鋼材を局部加熱で矯正する場合の温度範囲は、次を標準とする。これ以外の鋼について、設計担当者と打ち合わせる。
(1) 加熱後空冷する場合    850~900℃
(2) 加熱後直ちに水冷する場合 600~650℃
(3) 空冷後水冷する場合    850~900℃
(ただし.水冷開始温度650℃以下)
なお、この温度は、加熱表面の温度を示している。温度測定には、接触温度計等が用いられる。
7.3.7 鉄筋の貫通孔径
(a) 鉄骨鉄筋コンクリート造では、鉄骨製作の段階で、鉄筋の買通孔をあけておかなければならない場合がある。
(b) 貫通孔径は、「標仕」表7.3.1による。
鉄筋が斜めに貫通する場合や鉄骨の形が複雑な場合には貫通孔の径を増す必要があるが、鉄筋の間隔によっては鉄骨の断面欠担が大きくなり、構造上問題となることがあるため、必要に応じて設計担当者と打ち合わせる。
なお、同一の部位に種々の径がある場合には、混同しやすいのでなるべく統一するのがよいが、その場合は、必ず設計担当者と打ち合わせる。
(c) 鉄筋の貫通孔の位置を決めるには、仕口部分の鉄筋の状態が分かっていなければならないが、簡単な場合の例を示せば図7.3.4のようになる。
図7.3.4 の作成に当たっての主な注意事項を次に示す。
(1) 鉄筋の交差位置では、どちら方向の鉄筋を上にするか決めなければならない。
一般的な基準はないが、通常梁せいの小さい方の主筋を外側にするなどの配慮が必要である。
(2) 四隅の梁筋の位置は、図7.3.4(ハ)の梁部分詳細に示すようにして定める。梁筋の仮想の直径 dを下式の値とする。
d ≦ 公称直径+節の最小高さ × 2
梁筋が2段になる場合は、内側になる鉄筋が特に鉄骨に当たりやすい。
(3) 鉄骨面と平行となる鉄筋の間隔は「標仕」5.3.5(d)及び(e)に定める鉄筋の間隔以上にする。
(4) 加工した鉄筋を、どのようにして差し込んだらよいか検討しながら鉄筋の位置及び継手位置等を定める。特に最外端の梁筋は注意を必要とする。
(5) 鉄骨フランジの鉄筋貫通は、耐力低下を招くので行ってはならない。
図7.3.4_仕口部分の梁筋貫通孔の例.jpg
図7.3.4 仕口部分の梁筋貫通孔の例
7.3.8 ボルト孔
(a) 高カボルト用の孔あけ加工は、鉄骨製作工場で行い、ドリルあけとする。加工精度の確保が可能なことを工場製作要領書の提出等によって確認できる場合は、小・中形山形鋼等にせん断孔あけを使用することができる。高カボルト接合面をブラスト処理する場合は、ブラスト前に孔あけ加工を行う。
(b) ボルト孔、アンカーボルト孔、鉄筋貫通孔は、ドリルあけを原則とするが、板厚 13mm以下の場合は、せん断孔あけとすることができる。
(c) 設備配管用貫通孔、付属金物等の孔で、孔径が 30mm以上の場合はガス孔あけを使用できる。ガス孔あけを行う場合の切断面の粗さは100mRz以下、ノッチ深さは1mm以下とし、孔径の精度は ± 2mm以下とする。
(d) 高力ボルト、普通ボルト及びアンカーボルトの公称軸径に対する孔径は、「標仕」表7.3.2による。溶融亜鉛めっき高カボルトの公称軸径に対する孔径は表7.3.2による。
(e) 孔あけ加工は、孔あけされる部材表面に対して直角度を保ち、正規の位置に行う。ドリル孔あけ後の孔周辺のばり、切り粉、せん断孔あけ後のばり、まくれ及びガス孔あけ後の凹凸.ノッチはグラインダー等により除去する。
7.3.9 仮設用部材の取付け等
仮設用部材のほか、設備関係、コンクリート・鉄筋関係、内・外装関係等の付属金物類や付属金物をあと付けするための金物類の取付けには主に隅肉溶接が用いられるが、この隅肉溶接は「仮付け溶接」と称されることが多く、安易に施工されがちである。したがって、その取付けは作業環境が悪く溶接品質の確保が困難な工事現場を極力避け、可能な限り鉄骨製作工場で行う。ただし、製品完成後に鉄骨製作工場の屋外滞貨場で溶接した場合には、工事現場の作業環境とほとんど変わらない。それを避けるためには、製作工程に合わせた適切な時期に付属金物類の取付け要領を決定し、本体の工場製作と同時に付属金物類の取付けを行うことが必要である。このために、仮設用部材・付属金物類の取付けに関しては、施工図・工作図の作成段階に必要なものを盛り込んでおく必要がある。
やむを得ず工事現場で溶接する場合も、原則として、JIS Z 3801又は3841の有資格者が従事し、ショートビードを避けるほか、外観検査の実施等、主要部材の溶接と同等の品質が得られるように施工することが必要である。
7.3.10 仮 組
(a) 一般の建築鉄骨では例が少ないが、仮組の実施が特記されている場合には、仮組要領書を提出させ、特記内容と照合・確認する。
仮組を行う目的の主なものは、次のとおりである。
(1) 部材数が多く、製品精度が工事現場の出来形に影響を及ぼす場合
(2) 複雑な構造物で、工事現場の作業に支障がないことを確認しなければならない場合
(3) 大架構部材のたわみ量を工事現場の建方以前に確認しておく必要がある場合
(4) 遠隔地や交通が不便な土地で、不具合が発生したとき補修に多大な費用を要する場合
(5) 鉄道線路等に近接した工事現場のため、建方時間に制約を受ける場合
(b) 仮組要領書の主な記載内容は、次のとおりである。
(1) 仮組の範囲
仮組の目的、工場敷地、設備能力等から総合的に決定される。
(2) 仮組の方法
(i) たわみ量の測定が目的の場合は、工事現場の建方と同一条件になる方法を採用する。
(ii) 寸法精度・納まりの確認の場合は、分割や横転の方法等により、安全と作業性を考慮した方法を採用する。
(3) 確認項目・測定方法及び許容差
仮組における確認項目を次に示す。許容差はJASS 6付則6を参考にし、規定がないものはあらかじめ受注者等・鉄骨製作工場と打合せをしておく必要がある (7.13.1参照)。
① 全体寸法
② 部材相互の接合部納まり
③ 部材組立の可否
④ たわみ量
7.3.11 巻 尺
(a) 鋼製巻尺は、JIS B 7512(鋼製巻尺)の1級品を使用する。
(b) 鉄骨工事では、工事現場と鉄骨製作工場で異なる基準巻尺を使用することから、双方の基準巻尺を照合し、その誤差が工事に支障のないことを確認しなければならない。確認は工事現場用と鉄骨製作用の基準巻尺を並べた状態で一定の張力(鋼製巻尺に指定された張力とする。一般には50N)を与え、基準巻尺間の目盛り差を読み取って行う。JIS 1級構製巻尺の長さ10mにおける最大許容差は ± 1.2mmである。したがって、長さにおいて最大相対誤差が2.4mmとなる場合が生じる。
(c) 工場製作の各工程において使用する鋼製巻尺は、鉄骨製作用基準巻尺と照合し、その誤差を確認する。使用する鋼製巻尺は、誤差が最大許容差の1/2程度の精度を有するものを選択して使用するのが望ましい。(2.2.3(d)参照)
(d) 工事現場で鋼製巻尺を使用する場合は、気温による鋼製巻尺の伸縮を考慮して測定時刻を定めるか、気温変化による温度補正を行う必要がある。(2.2.3(d)参照)
7.3.12 製品検査
(a) 受注者等及び鉄骨製作工場が実施している製品検査の内容は、次のようなものである。鉄骨製作工場の行う社内検査、受注者等の行う中間検査・受入検査については、7.1.5(b)を参照のこと。また、受注者等が行う受入検査には書類検査と対物検査がある。
(1) 形状及び寸法精度の検査
製品寸法について、所定の形状及び寸法精度であることを確認する検査であり、検査項目・方法・許容差はJASS 6付則6等を基に、工場製作要領書等で定められた値によって行う。 (7.13.1参照)
(2) 取合い部の検査
仕口部・取合いプレートについて、設計図書の指示通りであるかを確認する検査である。
(3) 外観の検査
部材表面・切断面・工事現場溶接部の開先について、傷・ノッチ等の有無を確認する検査であり、検査項目・方法・許容差は「標仕」の規定のほか、7.3.5、7.6.7、7.6.10を参考にする。
(4) 高カボルト接合面の検査
高カボルト接合面について、所定の形状・寸法精度・外観であることを確認する検査であり、検査項目・方法・許容差は「標仕」7.4.2の規定による。工場締め高力ボルトの締付け検査も含み、方法等は「標仕」7.4.7及び8の規定による。
(5) 溶接部の検査
溶接部の表l面欠陥・内部欠陥について、所定の許容範囲にあるかを確認する検査であり、検査項目・方法・許容差・合否判定は「標仕」7.6.10及び11の規定による。
(6) スタッド溶接部の検査
スタッド溶接部について、所定の形状・寸法精度・外観であることを確認する検査であり、検査項且・方法・許容差は「標仕」7.7.3及び5の規定による。
(7) 塗装部の検査
素地調整した面と塗装面について、所定の外観であることを確認する検査である。塗膜厚等の詳細な検査については、検査の有無、測定方法、測定時期、測定箇所等について特記に従う。
(b) 塗装部の検査以外の製品検査は、原則として溶接外観検査その他の検査指摘事項の修正等が可能な塗装前の時期に実施する。
途装の指定がある場合は、原則として塗装部の検査以外の検査を終了したのちに塗装する。

7章鉄骨工事 4節高カボルト接合

第7章 鉄骨工事
4節 高カボルト接合
7.4.1 適用範囲
(a) 建築鉄骨で使用される高カボルト接合には、摩擦接合及び引張接合がある。
(b) 摩擦接合は高カボルトで継手部材を締め付け、部材間に生ずる摩擦力によって応力を伝達する接合法である。
(c) 引張接合は高カボルトを締め付けて得られる材間圧縮力を利用して、高カボルトの軸方向の応力を伝達する接合方法であり、摩擦接合と同様、ボルトの締付けカの存在に依存するものである。
(d) 通常規模の建物で設計される高カボルトを用いた接合部の形態は図7.4.1に示されるもので代表される。
図7.4.1(イ)は梁継手・柱継手で多用されるもので摩擦接合型と称される。図7.4.1(ロ)は柱梁剛仕口に利用できるもので引張接合型と称される。また、図7.4.1(ハ)は筋かい端に使用されることが多く、引張接合と摩擦接合の両型を併せたものとなっている。摩擦接合と引張接合を形態から識別するには、図7.4.2 の模式図で示すように高力ボルトの軸方向と伝達すべき応力が直交するものを摩擦接合型といい、ボルト軸方向と応力が平行(同じ方向)となる形式を引張接合型という。摩擦接合と引張接合では応力の伝達機構が異なるので接合部を設計する手順は、全く異なるものである。
図7.4.1_高力ボルトの接合部の例.jpg
図7.4.1 高力ボルトの接合部の例
図7.4.2_摩擦接合,引張接合模式図イ.jpg 図7.4.2_摩擦接合,引張接合模式図ロ.jpg
図7.4.2 摩擦接合、引張接合の模式図
しかし、いずれの接合部であっても設計されたあとに、これを加工・施工する過程で要求されるものは、ほとんど共通している。このことは、摩擦接合型の接合部の加工・施工が完全に行えればこれと同じ手法を適用することで引張接合型の接合部の加工・施工上の要求も同時に満足できるものとなると解釈してよい。したがって、本節では、現在最も普及している摩擦接合について記述しているがその内容は、すべての高カボルト接合部に適用できるものとして考えてよい。
(e) 高力ボルト接合部加工・施工の要点を表7.4.1に示す。
高力ボルトセットを図7.4.3に示す。
表7.4.1 高力ボルト接合部加工・施工の要点
表7.4.1_高力ボルト接合部加工・施工の要点.jpeg
図7.4.3_高力ボルトセット.jpg
左から、JIS形、トルシア形
図7.4.3 高力ボルトセット
(f) 高力ボルトの各種試験及び検査
「標仕」7.2.2では「トルシア形高力ボルト」と「JIS形高力ボルト」に区分されている。これらの高力ボルトの各段階における試験及び検査の内容を表7.4.2に示す。
表7.4.2 試験及び検査の内容
表7.4.2_試験及び検査の内容.jpeg
(g) 高カボルトは、熱処理されているため、原則として溶接等による入熱は避けなければならない。
(h) 高カボルト摩擦接合部の性能を確保するためには、摩擦面の処理とボルト締付けカの管理が重要である。「標仕」では規定されていないが、(一社)日本鋼構造協会の「建築鉄骨品質管理機構」では、摩擦接合部の管理を適切に行うために「建築高カボルト接合管理技術者」(7.1.4 (c)(1)参照)を認定しているので、必要に応じて活用するとよい。
7.4.2 摩擦面の性能及び処理
(a) すべり係数値は.表7.4.3 に示すように、摩擦面の状態によって大きな差があるが「標仕」7.4.2に定めた状態であれば、すべり係数値は0.45以上になる。
ただし、ブラスト処理により表面粗度を50μmRz以上(70μmRz程度)確保できれば錆の発生は必要ない。ブラスト処理にはサンド、ショット及びグリットによる方法があるが、このうちサンドブラストでは十分な表面粗度が得られないため、「標仕」で規定されているのは、ショットブラスト及びグリットブラストである。
表7.4.3 各面のすべり係数値(μ)の値
表7.4.3_各面のすべり係数値.jpeg
(b) 「標仕」7.4.2に定められた錆の発生状態は、鋼材の表面が一様に赤く見える程度のことであり、少ないのも、浮き錆に近いのも不適当である。
(c) 接合部の力を伝達する部分には、すべり係数の小さいものを挟んではならないのでフィラープレートも主材と全く同様に処理しなければならない。
(d) ミルスケールの除去は、原則として、添え板(スプライスプレート)全面の範囲とする。
(e) 通常の工事では大型材には、ディスクグラインダー掛け、小型の添え板等には、ブラスト法とすることが多いが、建物が小規模の場合はディスクグラインダー掛けだけの場合が多い。この場合ボルト孔周辺がへこまないよう注意する。
(f) ボルト頭部及び座金の接する部分は、摩擦面そのものではないが、とも回り、軸回りを防止し導入張力を確保するために、鋼材のまくれ、ひずみ等は取り除かなければならない。
7.4.3 標準ボルト張力
(a) 「標仕」表7.4.1の標準ボルト張力は.締め付けてボルトに導入する張力の標準値である。
(b) 標準ボルトの張力の算定は(一社)日本建築学会「鋼構造接合部設計指針」に基づいて次のように行っている。
(1) 設計ボルト張力(N0
 7.4.3_設計ボルト張力.jpeg
(2) 標準ボルト張力:N1=1.1・N0(「標仕」表7.4.1参照)
(c) トルク係数値及び張力の確認
(1) 張力を導入する方法は、通常ナットを回転して行う(7.4.7参照)。
機械的に所定の張力を与え、ナットを締め付けて張力を保持する方法で、トルシア形高力ボルト、JIS形高力ボルトがこれに属する。
(2) 高力六角ボルトはJISマーク表示認証を取得した製品を製造する工場で、トルシア形高力ボルトは国土交通大臣の認定を取得した製品を製造する工場で製造されており、品質管理がなされている。 上記の工場から出荷され、未開封のまま現場へ搬入され、適切に受け入れ・保管された高力ボルトについては、製造所が発行する規格品証明書(社内検査成績表)の確認でよい。
しかし、何らかの事情により長期間保管された高力ボルト等を用いようとする場合は、工事着手前に高力ボルトの品質確認のための試験を行うべきである。品質確認のための試験として、高力六角ボルトの場合はトルク係数値試験、トルシア形高力ボルトの場合は導入張力確認試験が適している。
7.4.4 ボルトセットの取扱い
(a) 高力ボルトは、ねじの損傷、ねじ・ナット・座金等の錆、油類の付着、砂粒・金属粒の食い込み等により、トルク係数値が変動するので締付け時のトルクと導入されるボルト軸力との関係が変わってしまい、正しい張力を与えることができなくなる。
そのため「標仕」7.4.4では特に取扱いを丁寧にすることを定めているが、一般的な注意事項を挙げると次のようになる。
(1) 保管は、乾燥した場所に、等級別、ねじの呼び別、長さ別に整理し、作業に応じて搬出しやすいようにしておく。箱の積上げ高さは3~5段程度とする。トルク係数値がA種のものは、表面処理が温湿度により変質してトルク係数値が変動しやすいので注意が必要である。
なお、トルシア形高カボルトは、トルク係数値が変化した場合、導入張力の調整ができないので、トルク係数値が大きく変動しないように取扱いに注意する。
(2) 保管中異状を生じた疑いのあるものは、使用前にトルク係数値試験を行う。
(3) 運搬をいちどきに大量に行うと、箱がつぶれたり、ボルトが中で移動して、ねじを傷つけるおそれがある。運搬した箱を降ろす際にも丁寧に扱う。
(4) 施工直前に包装を解くが、必要な量だけにして、解いたものを使い残さないようにする。やむを得ず残ったものは、元のように包装し直して箱に戻す。
(b) 試験や機器の調整に用いられたボルトは、既にトルクと張力との関係が変わってしまっているので、「標仕」7.4.4(c)では本工事への使用を禁止している。
7.4.5 締付け施工法の確認
JASS 6 (2007)では締付け施工法の確認方法が、導入張力確認試験から次のように変更された。当該工事の接合部から代表的な箇所を複数選定し、JASS 6 6.4[高力ボルトの締付け]のa.(1) ii)〜 iv) 若しくはb.(1) ii)〜 iv) に示す要領で締付けを行う。それぞれの接合部に対し、JASS 6 6.6[締付け後の検査]に示す要領で検査を行い、いずれも合格することを確認する。
7.4.6 組 立
(a) 組立は、摩擦面を汚さないように、十分密着させなければならない。しかし板厚の差等による1mm以下の隙間はあまり問題にならないとされている。
したがって、隙間が 1mmを超えると、フィラープレートを入れることになるが、フィラープレートの厚さは 1.6mm以上にするのが普通である。
なお、薄板の厚さはJIS G 3193(熱間圧延鋼板及び鋼帯の形状、寸法、質量及びその許容差)に定められている。一般に入手しやすいものは、1.6、2.3、3.2、4.5 mmである。
(b) 板厚が厚い場合は、添え板(スプライスプレート)との密着性が悪くなったり、ボルト孔がずれた場合に手直しが不可能になったりするので、加工精度には特に注意を要する。
(c) 勾配座金は、図7.4.4に示すように、通し座金にするのがよい。
(d) 組立の際、ドリフトピンを無理に打ち込まなければならないということは、孔あけの精度が悪いからで、部材の孔合わせを正確に行うことが大切である。
また、無理に打ち込めば孔周囲にまくれが生じ、このまくれの除去が十分に行われることは期待できないうえに、ボルトのねじも傷つけやすい。
現場の処置としては.孔心の不一致が著しい場合は、添え板を取り替え、現場に合うようなボルト孔をあけ直させる(「標仕」7.4.6(d)参照)。
(e) ドリフトビンは仮組み用の工具で、部材を組み立てるとき、ボルト孔に通して部材を正確に保持させて仮留めするのに用いる。また、ぼろしんは部材を組み立てる前のボルト孔合わせに使用する工具である(図7.4.5参照)。
図7.4.4_勾配座金.jpg
   図7.4.4 勾配座金
図7.4.5_組立用工具.jpg
   図7.4.5 組立用工具
7.4.7 締付け
(a) 締付け方法
トルクコントロール法:一定のトルクを与えて締め付ける方法。トルシア形高力ボルト及び JIS形高力ボルトに適用する。トルク(ねじりモーメント)とは物をねじる力であって、その大きさをTとすれば図7.4.6の場合では T= P ・ℓとなる。
  図7.4.6_トルク.jpg
    図7.4.6 トルク
(b) トルシア形高力ボルト及びJIS形高力ボルトの締付けは、一次締め→マーキング → 本締めの2度締めにより、ナットを回して締め付けるのを標準とする。締付け順序を次に示す。
[ 材料の確認 ]
高カボルトメーカーの社内試験成績書を確認する。
 ↓
[ 締付け機器の調整 ]
トルクコントロール法で締め付ける場合は、適正に校正された軸力計やトルクレンチを用い、締付け機の調整作業(キャリブレーション)を行う。
 ↓
[ ボルトの取付け ]
仮ボルトの取付け・締付けを行って部材を密着させたのちに、高力ボルトを取り付ける。ねじ山を傷めないように挿入し、ナット、座金の向きを正しくセットする。
 ↓
[ 一次締め ]
一次締めはねじの呼びに応じて「標仕」表7.4.2に示すトルク値で締め付ける。これにはプレセット型トルクレンチを用いるのがよい。この一次締めによりボルトにはおおよそ40〜 60kNの張力が導入される。一次締めの目的は、被締付け材間を完全に密着させることにあるので、接合部の状況によって「標仕」表7.4.2に示すトルク値では十分な密着状態にならない場合には、一次締付けトルク値を「標仕」表7.4.2に示す値よりいくぶん大きくしてもよい。
 ↓
[ マーキング ]
1接合部の全ボルトを一次締めしたのち、全ボルトについてマーキングを行う。これは本締め終了後の検査のための重要な意味をもつので、ボルトの種類によらず実施しなければならない。マーキングの要領は図7.4.7に示すようにボルト軸からナット・座金・母材にかけて白色のマーカー等で印をする。マーキングまでの手段は、トルクコントロール法及びナット回転法とも共通である。
 ↓
[ 本締め ]
トルクコントロール法では標準ボルト張力を得られるように、トルシア形高力ボルトでは専用レンチを用いてピンテールの破断まで締め付ける。ナット回転法は,所要のナット回転量まで締め付ける。
(c) 材料の確認
締付けに先立ち施工箇所に適したボルトであることを、高力ボルトメーカーの社内試験成績書で確認するとともに、包装が崩れたり、汚れたりしているものについては、トルク係数値の変動のおそれがあるので試験する必要がある。変動のあった場合は締付けトルクを調整するか、使用を止める。
(d) 締付け機器の調整
トルクコントロール法では、トルシア形高力ボルトの場合、軸力計にボルトをセットして、専用締付け機でピンテール破断溝部が破断するまで締め付け、所要のボルト張力が得られることを確認する。JIS形高力ボルトの場合、軸力計にボルトをセットして、工事現場で使用する締付け機で締め付け、標準ボルト張力が得られるトルク値に調整されていることを確認し、この際のボルト張力とトルク値の関係を記録しておき、締付け検査のトルク決定の資料とするのがよい。
(e) ボルトの取付け
本接合に先立ち、仮ボルトの締付けを行い、部材接合面の密着を図る。特に、トルシア形高力ボルトの場合は、入念に行わなければならない。
ボルトの長さ、等級、ねじの呼び、ナットの裏表、座金の裏表等が使用箇所に適正に取り付けられていることを確認する。
ナットは、等級の表示記号が締付け後外側から見える向きに取り付ける。
ボルト頭部側の座金は、座金の内側面取り部がボルト首下部と合うよう取り付け、ナット側の座金は、座金の内側面取り部がナットに接する側に取り付ける。
(f) 一次締め
一次締めは、長めの柄のスパナ又はプレセット形トルクレンチを使用して、「標仕」表7.4.2によるトルク値でナットを回転させて行う。
一次締めに電動式インパクトレンチを使用する場合は、一次締めトルク値が得られるものを選定して使用する。
高力ボルトの締付けは、ナットを回転させることによりボルトに導入する張力をコントロールしているが、ボルトの長さが長くなると、ナットの同転時にボルトに生ずるねじれや、鋼材の変形(縮み)が無視できなくなり、ボルトに導入される張力が小さくなる。
このため「標仕」7.4.7 では、ボルトの長さがねじの呼びの5倍以下の場合の締付けを規定している。
ねじの呼びの5倍を超える長さのボルトを用いる場合は、締付けが不十分となる場合が生じるので、実験により一次締めを含めて施工条件を決定する。
(g) マーキング
一次締め後ボルトにつけるマークには次のような目的がある。
(i) 一次締め完了の確認
(ii) 本締め完了後マークのずれの位置によるとも回り及び軸回りのないことの確認
(iii) マークのずれによる本締め完了の確認
(iv) ナットの回転量の確認
ナットのみがボルト軸に対して相対回転していることを目視で確認することで締付け状態を検査するものであるからマークはボルト軸・ナット・座金・母材(添え板)にわたってつけなければならない。
とも回りには、ナットの回転とともにボルトも回転する場合とナットの回転とともに座金が回転する場合がある。軸回りとは、トルシア形高カボルトで回転の反カがとれずナットが回転せずにボルトが回転して、ピンテールが破断することである。
回転の反力がとれない原因としては、①一次締めによる適正な接触面圧が与えられていない、②部材の接触面が滑らかで反力が発生し難い、③接触面の間に異物が介在して面としての反力が発生しない、などが考えられる。トルシア形及びA種JIS形高力ボルトはナットに潤滑処理を施し、トルク係数値が一定になるように製作されている。トルシア形高カボルトの締付けにおいて、ナットと座金間以外の摩擦でピンテールが破断すると、トルク係数値が変動し、所定のボルト張力が導入できない。不確実な作業ではとも回り、軸回りをすることが多いので、図7.4.7(イ)のように一次締め後のマークをナットの角につけるなどつけ方を厳しくし、その発見を容易にする。図7.4.7(ロ)は本締めが正常に終了した状態、図7.4.7(ハ)は、ナットと座金のとも回り、図7.4.7(ニ)は軸回りの例である。
なお、マークは白色のマーカー等を用いるとよい。
図7.4.7_マーキング.jpg
図7.4.7 マーキング
(h) 本締め
トルシア形高力ボルトの場合の本締めは、専用締付け機を用いてピンテールが破断するまで締め付ける。
JIS形高力ボルトの場合の本締めは、標準ボルト張力が得られるようにトルクコントロール法又はナット回転法により行う。
(i) 1群のボルトを中央部から周辺に向かって締め付けるのは.締付けによる板のひずみを周辺に逃すためである。
7.4.8 締付けの確認
(a) トルシア形高力ボルトの場合
トルクレンチを用いた検査を行わないのは次の理由による。
(i) ボルト張力がボルトの製品精度(ビンテールの破断強度)で決まる。
(ii) 本締めの終了したことが外観で分かる。
(b) JIS形高カボルトの場合
(1) 締付けの確認は、トルクコントロール法及びナット回転法とも、ナット回転量を目視検査する。トルクコントロール法においてはナット回転量に著しいばらつきがある場合、その1群のボルトをトルクレンチを用いてナットを締め、ナットが回転を始めた瞬間のトルク値(追締めトルク値といわれている。)を読み取る方法が一般に用いられている。
(2) 確認は、1群ごとに行う。ここでいう1群とは,一塊のボルトの集まりであり、1枚の添え板に締め付けられるボルト数と考えてもよい(図7.4.8参照)。
図7.4.8_1群のボルト.jpg
図7.4.8 1群のボルト
(3) 標準トルクの算定
(i) 標準トルクの計符値は.次式によって求める。
Tr = k・d1・N1
ただし、
Tr:標準トルク (N・m)
k :トルク係数値
d1:ボルトのねじの外径の標準寸法(mm)
N1:「標仕」表7.4.1の標準ボルト張力(kN)
(ii) 次の場合の計算例を示す。
ボルトの呼び径:M22
トルク係数値による種類: A種(k=0.135)
上記の式から
 Tr=0.135 x 22 x 226=671 (N・m)
ただし.d1=22mm
N1=226 kN(「標仕」表7.4.1)
(c) 「標仕」7.4.8 (a)から(c)までにある締付けの確認は、受注者等に対する規定であり、監督職員の検査は「標仕」7.4.8 (f) に定められている。この場合は受注者等の提出した確認の記録に基づいて、適宜施工済みボルトを抽出し、検査を行う。
7.4.9 締付け及び確認用機器
(a) トルシア形高カボルトの締付けには専用の機器を用いる(図7.4.9参照)。
図7.4.9_トルシア形高力ボルトの締付け器具例.jpg
図7.4.9 トルシア形高力ボルトの締付け器具例
(b) JIS形高カボルトの締付け機器には,次のようなものがある。
(1) 電動式締付け器具(図7.4.10参照)
電動機を使用して締付けトルクを与え、トルク制御も電気的に行う。比較的重量も軽く、締付け精度の良い器具である。工事現場で行う、追締めトルクの確認における許容誤差は ±7% 程度とするのがよい。
図7.4.10_電動式締付け器具例.jpg
図7.4.10 電動式締付け器具例
(2) 手動式トルクレンチ(JIS B 4652) (図7.4.11参照)
トルク検定器で検定したときの許容誤差は ±3% 程度とするのがよい。
図7.4.11_トルクレンチ.jpg
図7.4.11 トルクレンチ
(3) 軸力計(キャリブレーター)(図7.4.12参照)
締付け機器でボルトを締め付けたときのボルト張力を測定する計器である。ボルト張力が「標仕」の標準ボルト張力になるように、締付け機器のトルクを調整するのに用いる。7.4.8に示すトルク係数値及び導入張力の確認試験の際に使用する。
軸力計の測定許容誤差は ±3%とする。
  図7.4.12_軸力計.jpg
  図7.4.12 軸力計